
Day 4 Notes

#coding-intro

This note discusses a fundamental element of most Turing complete programming
languages: control of program execution. We'll be exploring the features of the Python
language that enable this control, but the same ideas and construct exist in many other
languages, including Java, C, and so on.

> Turing completeness is a fancy way of saying that a programming language is able to
describe any program that computes anything that can be computed. In practical terms,
this means any application you see on your computer today (this definition is overly
simplistic, but the details are not important for this note).

Motivation for control

So far, programs we've seen flow from start to finish in a completely predictable manner.
Let's say we write a "calculator" program that looks like this:

z = 10 + 10

print(z)

No matter how many times we run this program, we'll get the same output (20). This tends
to be not too useful since once we've calculated this value, there's not much value to this
program.

Real world calculators take in user input and react accordingly. For example, you may
want to add together two numbers one day, and then divide two numbers the next.
Having one program that can handle all of this is great, but is impossible with the skills
we've learned so far. This is one of many reasons why we would like to control the
execution of the program.

In English, we would like the program to behave like this:

ask user for two values: x and y

read in x and y

https://en.wikipedia.org/wiki/Turing_completeness
https://en.wikipedia.org/wiki/Turing_completeness

ask user to reply with add/sub/mul/div

if user responded with add: print x + y

else, if user responded with sub: print x - y

else, if user responded with mul: print x * y

otherwise, print x / y (we're assuming they put "div")

This is a much more useful program. Although we will not cover how to read user input
directly from running a Python script, you can still take in your own input by calling your
function with different arguments (operands).

Boolean expressions

While everyone is familiar with numbers, there is another useful type of data known as
boolean values. Booleans are either true or false. This is very useful for control, because
you often need to make a decision based on if an expression evaluates to something that
is considered true or false. For example, here are some common mathematical
comparisons:

>>> 10 > 5

True

>>> 11 < 10

False

>>> x = 4 # This is an assignment statement

>>> x == 4 # This compares the values of two expressions

True

Boolean operators
Much like how mathematical operators combine numbers to produce an numerical output,
boolean operators combine true/false to produce a true/false output.

 and takes in two expressions, and returns True if they are both truthful. Otherwise, it
returns False .

 or takes in two expressions, and returns False if they are both "falsy". Otherwise, it
returns True .

> There is a important distinction between False and something "falsy" (and a distinction
between something True and truthful). To be precise, I didn't want to limit it to just False ,

but anything False is considered "falsy".
 not takes in a single expression, and returns the negation of the result. So something
truthful becomes False , and something falsy becomes True .

if statement

The if statement is very similar to what the calculator example looked like above. The
basic structure looks like this:

if <e1>:

 <et1>

elif <e2>:

 <et2>

elif <e3>:

 <et3>

...

else:

 <ef>

<e1> , <e2> , <e3> . are expressions. <et1> , <et2> , and <ef> represent one or more
expressions. Take note of the indentation levels.

You can have any number of elif clauses (which is an elif , an expression on the same
line, and an indented code block following it), but they must appear after an if clause
and before the else clause (if it exists). There is a maximum of 1 else clause per if
clause. Here is a more concrete example:

x = 10

if x < 15:

 print("medium")

elif x < 30:

 print("large")

else:

 print("extra large")

if x > 0:

 print("small")

In this case, the first x < 15 would evaluate to True . So we execute the code under the
first if and print "medium". According to the rules of the if statement, we don't check
any of the other elif or else associated with this if once we hit something that's True .
We skip ahead to the next if statement.

At the next if , x > 0 evaluates to True and we print "small".

The total output would be "medium" and then "small".

What would the output be if x = 17 ? We would get "large" from the elif clause and
"small" from the last if .

while loop

The while loop has the following structure:

while <e1>:

 <et>

Again, e1 is an expression and <et> is one or more expressions.

We first check to see if e1 evaluates to something truthful. If so, we execute <et> (which
could be one or more expressions. We then repeat our previous steps.

If e1 ever becomes something "falsy", then we skip <et> and go on to the next line.
Here's an example using while :

x = 0

while x < 4:

 print(x)

 x = x + 1

print(x)

What will this display? First, x will be 0, so we print 0. Then we increment x till we hit 4.
Finally, we print x one more time. Therefore, the total output is:

0

1

2

3

4

Resources

Same resources as Note 1, but copied here again:
 Learn Python has a free tutorial for Python.
 Codecademy has a good Python tutorial, but don't pay for their pro course. You'll need to
make a free account to access it. They also have lessons for other languages.

 CS 61A is UC Berkeley's intro to computer science course. Much of this course is based on
the information from the early lectures! The lecture videos and assignments are available
online. Check out Spring 2018 here, which is taught by a professor. In the summer, it is
taught by students.

https://www.learnpython.org/en/Hello%2C_World%21
https://www.learnpython.org/en/Hello%2C_World%21
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
http://cs61a.org
http://cs61a.org
http://sp18.cs61a.org/
http://sp18.cs61a.org/

