
Day 1 Notes

#coding-intro

Introduction

Although course slides are published online, they don't contain very detailed information.
The purpose of these notes is to provide a summary of what I went over in class.

Why Programming?

 What does a computer do? They're great at doing simple, repetitive tasks.
 What is programming? Computers can't read your mind (yet), so we write programs to
tell them what to do. Computer code are the instructions you give to a computer, and they
follow rules according to a programming. Programming is commonly defined as the act of
writing computer code.
 Why should you care? If you ever want to become a computer engineer or programmer,
then learning how to program is a must. Even if you never plan on writing a single line of
code again, however, it's still important to know a little bit of what's going on behind the
scenes.

Setup

Please install the following (ask for help if you run into any issues):
 A terminal emulator (macOS comes with one)
 Python programming language
 Atom, a text editor

Python

Python is a popular, free, and easy to learn programming language.

Python also comes with a helpful interpreter, which you can use to run code. You can also
put Python code into a file and then run it later.

To start the interpreter, first open up your terminal, and then enter the following:

python3

If you're on Windows, you may need to use:

python

You'll see three angle brackets >>> which indicates that you can now type in Python code.
Try the following (don't type >>>):

>>> print("Hello world!")

Then press enter. You'll should see some output. You can also put in arithmetic expressions
to do some quick mathematics:

>>> 2 + 2 - 1

3

When you're done, use the following to exit the interpreter:

>>> exit()

Writing Programs

Every Python program is made up of expressions and statements.

Expressions
An expression describes a computation and evaluates it to a value. The most familiar
expressions are probably the arithmetic expressions you've seen in your math class. Open
up the interpreter again and try some out.

>>> 2 * 2

4

>>> 2 ** 3

8

>>> 8 / 3

2.6666666666666665

Every expression has an operator, and an optional number of operands. Operands are
inputs to the operator, and the operator describes the rules for what should happen to the
inputs. Just think of what you know from math expressions: the addition operator takes in
numbers, and tells us to sum them together.

Therefore, in the example above, the Python interpreter is just evaluating call
expressions — that is, calling a function.

This “infix” notation (where the operator comes between the operands) is familiar from
mathematics, but is included primarily for convenience. The typical form of expressions is
closer to this:

>>> mul(2, 2)

4

>>> pow(2, 3)

8

Note that the following lines above will not work in your interpreter unless you do the
following:

>>> from operator import *

This form is called function call notation. There’s an operator and a set of parentheses
with operands within. A call expression is when you call a function. You can combine
multiple call expressions together:

>>> add(mul(2, 3), 4)

10

In this case, our calls are nested. What comes first? The order is that you evaluate the
operator first, then the operands, then finally apply the operator to the values of the
operands. Applying is when we actually do the adding or multiplying!

For the example above, we evaluate in this order:
1. add(mul(2, 3), 4) . Look to the very left of this line — the operator is add . We are done

evaluating add , so we need to evaluate the operands: mul(2, 3) and 4 .
2. mul(2, 3) . We do the same procedure from before: the operator is mul , and the

operands are 2 and 3 . Finally, we can apply and get back 10.
3. Going back to add(mul(2, 3), 4) : the operand mul(2, 3) evaluates to 6, and 4

evaluates to 4. We can apply the operator now and get back 10!

Of course, math functions are built in. But what if you want to make your own functions?
We'll get to that later.

Statements
The most common statement in Python is the assignment statement:

>>> x = 10

>>> x

10

>>> y = x + 20

>>> y

30

The assignment statement takes a name on the left of the = and an expression on the
right. The expression is evaluated, and the value of that expression is assigned to the
name.

There are also built-in names, which you can fetch using an import statement.

>>> pi

Error

>>> from math import pi

>>> pi

3.141592653589793

Comments
The computer won’t read comments, they are just there for humans to read. To write a
comment in Python, type # and everything afterwards will be part of that comment and
ignored. You can do this in the interpreter too!

>>> 2 + 30 / 3 # Order of operations matters

12

Functions
Finally, we can write our own functions. Here’s a simple one that just returns 10.

def ten():

 return 10

The name of the function is ten . It takes in zero operands. Note that the second line is
indented. The special return statement describes the result of calling this function. Some
functions don’t have a return, and that’s okay.

This function is a bit wonky, since you’d probably never see something like it in math. We
can make something a bit more realistic:

def add_numbers(x, y):

 result = x + y

 return result

The name of the function is add_numbers . It takes in two operands, x and y . Now, there
are two lines indented — this tells Python that those two lines are executed whenever this
function is called.

You can probably guess what this function does, but just to make sure:

>>> add_numbers(10, 20)

30

>>> add_numbers(ten(), add_numbers(ten(), 20)) # You can nest your functions

too!

40

Navigating the command line

Much like how you can use Finder or Windows Explorer to navigate your files, you can use
the terminal to do so as well. Here are useful commands:

 ls dir_name lists contents of directory
 cd dir_name changes directory
 mkdir dir_name makes a new directory
 mv src dest move src file to dest

Demo

Here's a cool demo with Shakespeare, taken from cs61a.org. Type each line separately into
the Python Interpreter.

Objects

Note: Download from http://composingprograms.com/shakespeare.txt

shakes = open('shakespeare.txt')

text = shakes.read().split()

len(text)

text[:25]

text.count('the')

text.count('thou')

text.count('you')

text.count('forsooth')

text.count(',')

http://cs61a.org

Sets

words = set(text)

len(words)

max(words)

max(words, key=len)

Reversals

'draw'[::-1]

{w for w in words if w == w[::-1] and len(w)>4}

{w for w in words if w[::-1] in words and len(w) == 4}

{w for w in words if w[::-1] in words and len(w) > 6}

Resources

 Learn Python has a free tutorial for Python.
 Codecademy has a good Python tutorial, but don't pay for their pro course. You'll need to
make a free account to access it. They also have lessons for other languages.
 CS 61A is UC Berkeley's intro to computer science course. Much of this course is based on
the information from the early lectures! The lecture videos and assignments are available
online. Check out Spring 2018 here, which is taught by a professor. In the summer, it is
taught by students.

https://www.learnpython.org/en/Hello%2C_World%21
https://www.learnpython.org/en/Hello%2C_World%21
https://www.codecademy.com/learn/learn-python
https://www.codecademy.com/learn/learn-python
http://cs61a.org
http://cs61a.org
http://sp18.cs61a.org/
http://sp18.cs61a.org/

