https://v.gd/k2R3ry

#6 Orders of Growth & Linked Lists

TA: Jerry Chen (jerry.c@berkeley.edu)

"Testing shows the presence, not the absence of bugs."

Edsger Dijkstra

Average: 66.4

Orders of Growth

Some quick rules

- In the class, we care about average case performance (big Θ)
- Simplify by removing constants
- Simplify by keeping largest terms

$\Theta(\log n + n/2)$

$\Theta(\log n + n)$

 $\Theta(\log_{10}n)$

Θ(log n / log 10)

e(log n)

$\Theta(n \log n) < \Theta((\log n)^{\log n})?$

Disclaimer: this isn't a mathematically precise way of comparing growth functions. This is also probably beyond typical exam difficulty in this course.

$\Theta(n \log n) < \Theta((\log n)^{\log n})$

$\Theta(\log (n \log n)) < \Theta(\log [(\log n)^{\log n}])$

$\Theta(\log n + \log \log n) < \Theta(\log [(\log n)^{\log n}])$

$\Theta(\log n + \log \log n) < \Theta(\log n \log \log n)$

$\Theta(\log n) < \Theta(\log n \log \log n)$

l = Link(2, Link.empty)

l = Link(1, l)

l = Link(1, l)

l.rest.rest = Link(3)

l.rest.rest = Link(3)

l = [2, 3, 4, 5]

l = [2, 3, 4, 5]

. . .

• • •

