
#2 (More) Environments
and Recursion

Drawing Hands by M. C. Escher

TA: Jerry Chen (jerry.c@berkeley.edu)

mailto:jerry.c@berkeley.edu

Just for Fun

Clear winner, "jif"!

shh

The real tally

0

3

6

9

12

15

Jif Hard G Written Out ???

Code Style

Why care about code style?

• The Python interpreter doesn't really care

• You want your boss to understand your code

• You want your coworkers to understand your code

• You want future you to understand your code

Composition

• Syntactical quibbles

• Content choice and structure

Two main parts

Composition

• Grammar and spelling

• Content choice and structure

Two main parts (for an English essay)

Composition

• https://cs61a.org/articles/composition.html

• Syntax is easy to check: http://flake8.pycqa.org/en/latest/

• Content requires more human effort

https://cs61a.org/articles/composition.html
http://flake8.pycqa.org/en/latest/

Composition

• The "best" code is self-explanatory

• Remove repetition and don't repeat yourself

• Reduce length without compromising readability

A few big ideas

Writing "Self-Explanatory" Code

 1 # If x is in range and x is even then return True
 2 if x>10 and x<100 and x%2 == 0:
 3 return True
 4 else:
 5 return False

Writing "Self-Explanatory" Code

 1 # If x is in range and x is even then return True
 2 if x>10 and x<100 and x%2 == 0:
 3 return True
 4 else:
 5 return False

 1 in_range = lambda x: x>10 and x<100
 2 is_even = lambda x: x%2 == 0
 3
 4 if in_range(x) and is_even(x):
 5 return True
 6 return False

Is the earlier comment necessary?

Repetition

 1 while x < max_val:
 2 if x % 2 == 0:
 3 handle_a(x)
 4 x += 1
 5 else:
 6 handle_b(x)
 7 x += 1

Repetition

 1 while x < max_val:
 2 if x % 2 == 0:
 3 handle_a(x)
 4 x += 1
 5 else:
 6 handle_b(x)
 7 x += 1

 1 while x < max_val:
 2 if x % 2 == 0:
 3 handle = handle_a
 4 else:
 5 handle = handle_b
 6 handle(x)
 7 x += 1

Repetition

 1 while x < max_val:
 2 if x % 2 == 0:
 3 handle_a(x)
 4 x += 1
 5 else:
 6 handle_b(x)
 7 x += 1

Bonus: reduce nesting and length of loop code

 1 def choose_handle(x):
 2 ...
 3
 4 while x < max_val:
 5 handle = choose_handle(x)
 6 handle(x)
 7 x += 1

Even if the overall code is
longer, the while clause is
shorter and easier to read

Length and readability

 1 def double_eights(n):
 2 prev_eight = False
 3 while n > 0:
 4 last_digit = n % 10
 5 if last_digit == 8 and prev_eight:
 6 return True
 7 elif last_digit == 8:
 8 prev_eight = True
 9 else:
 10 prev_eight = False
 11 n = n // 10
 12 return False

Sometimes you bark up the wrong tree

Length and readability

 1 def double_eights(n):
 2 while n > 10:
 3 if n % 100 == 88:
 4 return True
 5 n = n // 10
 6 return False
 7
 8
 9
 10
 11
 12

Sometimes you bark up the wrong tree

Bonus*

 1 def double_eights(n):
 2 return '88' in str(n)
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

Sometimes, that tree is shorter than you think‡

*(You haven't learned this in class yet)
‡(Yeah, it's a weird analogy)

Composition

• There rarely is a "best" way

• The "best" way is even more rarely obvious

• All good code has its genesis in bad code

In Conclusion

Environment Diagrams

Environment Diagram Rules

• Names can also be bound to functions!

• Function call: create and number new frame (f1, f2, etc.)
— always start in global frame

• Assignment: write variable name and expression value

• Def statements: record function name and bind function
object. Remember parent frame!

• Frames return values upon completion (Global is special)

Recursion

Components of Recursion

1. Solve base case

2. Recursive call on a subproblem

3. Use the result to solve the original problem

3 Easy Steps

 1 def factorial(n):
 2 if n == 0:
 3 return 1
 4 return n * factorial(n - 1)

 1 def factorial(n):
 2 if n == 0:
 3 return 1
 4 return n * factorial(n - 1)

 1 def factorial(n):
 2 if n == 0:
 3 return 1
 4 return n * factorial(n - 1)

 1 def factorial(n):
 2 if n == 0:
 3 return 1
 4 return n * factorial(n - 1)

 1 def factorial(n):
 2 if n == 0:
 3 return 1
 4 return n * factorial(n - 1)

Base case

Recursive call

Using the result

 1 def hailstone(n):
 2 print(n)
 3 if n == 1:
 4 return
 5 elif n % 2 == 0:
 6 hailstone(n - 1)
 7 else:
 8 hailstone(n - 1)

What's wrong?

 1 def hailstone(n):
 2 print(n)
 3 if n == 1:
 4 return
 5 elif n % 2 == 0:
 6 hailstone(n - 1)
 7 else:
 8 hailstone(n - 1)

Tree Recursion

Call multiple functions

Useful for representing choices

Fib(n) = Fib(n - 1) + Fib(n - 2)

Fib(2) = Fib(1) + Fib(0)

Fib(2)

Fib(1) Fib(0)

Fib(4)

Fib(3)

Fib(1) Fib(0)

Fib(2) Fib(1) Fib(0)

Fib(2)

Fib(1)

