#2 (More) Environments
and Recursion

TA: Jerry Chen (jerry.c@berkeley.edu)

Drawing Hands by M. C. Escher

mailto:jerry.c@berkeley.edu

Just for Fun

How do you pronounce "gif"?

31 responses

2 (6!.!5%) 2 (6!!3%)

1.5

T (322(32(312(3;12(3,12(3;12(3)2% U (3.12(312(3.12(302(32(3.2(32(3.2(32(3.12(32(3.12(3: 2% Y (3. 2(312(3.2(312(3.12(312(3121
1.0

0.5

It's graphics interch... Like you pronounce... gif like gift but without t...
Gif (not jif) Jiff With a g like giraffe jif “Jif”

Clear winner, "jif"!

How do you pronounce "gif"?

31 responses

1.5

1 (3R(3N(3N(EBR(3N(3: 3N(3NEBRBER(BBRBNBRINERBELF
‘. .O 4y « A 3 ot ol ik i

0.5

It's graphics interch... Like you pronounce... gif v gift but without t...
J

Gif (not jif) Jiff With a g like giraffe “Jif

shh

The real tally

15

12

Jif Hard G

Written Out

7?77

Code Style

Why care about code style?

e The Python interpreter doesn't really care
* You want your boss to understand your code
e You want your coworkers to understand your code

* You want future you to understand your code

Composition
Iwo main parts

e Syntactical quibbles

e Content choice and structure

Composition
Two main parts (for an English essay)

e Grammar and spelling

e Content choice and structure

Composition

e https://cs61a.org/articles/composition.html

e Syntax is easy to check: http://flake8.pycaa.org/en/latest/

 Content requires more human effort

https://cs61a.org/articles/composition.html
http://flake8.pycqa.org/en/latest/

Composition
A few big ideas

e The "best" code is self-explanatory

* Remove repetition and don't repeat yourself

e Reduce length without compromising readability

Writing "Self-Explanatory"” Code

[
[
©)

X>10 X<100 X%2
True

g b~ W N BRK

False

Writing "Self-Explanatory"” Code

1

2 x>10 X<100 X%2 == 0:
3 True

4

5 False

1 in_range = X: x>10 X<100
2 1s_even = X: X%2 == 0

3

4 in_range(x) is_even(x):
5 True

6 False

s the earlier comment necessary?

Repetition

Xx < max_val:
X % 2 == 0:
handle_a(x)
X += 1

handle_b(x)
X += 1

~No 0o WDN R

Repetition

Xx < max_val:
X % == (0
handle_a(x)
X += 1

handle_b(x)
X += 1

~N o 0 b WN -

Xx < max_val:
X % 2 == 0:
handle = handle_a

handle = handle_b
handle(x)
X += 1

~N o 0o WDN R

Repetition
Bonus: reduce nesting and length of loop code

Xx < max_val:
X % 2 == 0:
handle_a(x)
X += 1

handle_b(x)
X += 1

~N o 0 b WN -

Even if the overall code Is
longer, the while clause is
shorter and easler to read

choose_handle(x) :

x < max_val:
handle = choose_handle(x)
handle(x)
X += 1

~N o 0o WDN R

Length and readability

Sometimes you bark up the wrong tree

1 double_eights(n):

2 prev_eight = False

3 n > 0:

4 last_digit = n % 10

5 last_digit == 8 prev_eight:
6 True

7 last_digit == 8:
8 prev_eight = True
9 X

10 prev_eight = False
11 n=n// 10

12 False

Length and readability

Sometimes you bark up the wrong tree

1 double_eights(n):

2 n > 10:

3 n % 100 == 88:
4 True
5 n=n// 10

6 False

-

8

9

10

11

Bonus*

sometimes, that tree is shorter than you think*

1 double_eights(n):

2 '88" str(n)
3

4

5

6

7

8

9

10

11

12 *(You haven't learned this in class yet)

t(Yeah, it's a weird analogy)

Composition
In Conclusion

e There rarely is a "best" way
* The "best" way is even more rarely obvious

e All good code has its genesis in bad code

Environment Diagrams

Environment Diagram Rules

* Names can also be bound to functions!

* Function call: create and number new frame (f1, f2, etc.)
— always start in global frame

 Assignment: write variable name and expression value

* Def statements: record function name and bind function
object. Remember parent frame!

* Frames return values upon completion (Global is special)

Recursion

Tree Abstraction

.. Values

(wooden trees): Relative description (family trees):
A tree has a root value and a list of branches Each location in a tree is called a node
Each branch is a tree Each node has a value

A tree with zero branches is called a leaf One node can be the parent/child of another

People often refer to values by their locations: "each parent is the sum of its children"

Components of Recursion
3 Easy Steps

1. Solve base case

2. Recursive call on a subproblem

3. Use the result to solve the original problem

1 def factorial(n):

2 if n ==

3 return 1

4 return n x factorial(n - 1)

def factor1a1(n)

1

, .

3 5 return l§

4 return n x factorial(n - 1)

1 def factorial(n):
2 if n ==

3 return 1
4

1 def factorial(n):
2 if n ==

3 return 1
4

B W N R

H
B e T e P e P e P e T O T T EEET YL
H

Recursive call

Using the result

Q.
()
=h

nailstone(n):
orint(n)
1if n ==
return
elif n % 2 == 0:
hailstone(n - 1)
else:
hailstone(n - 1)

coO O O b WDN K

What's wrong?

nailstone(n):
orint(n)
n == 1:
n % 2 == 0:

hailstone(n - 1)

coO O O b WDN K

hailstone(n - 1)

Tree Recursion

Call multiple functions

Useful for representing choices

Fib(n) = Fib(n - 1) + Fib(n - 2)

Fib(2) = Fib(l) + Fib(0)

Fib(2)

Fib(1) Fib(0)

Fib(4)

N

Fib(3) Fib(2)

YIVAN

Fib(2) Fib(1) Fib(l) Fib(0)

N

Fib(1) Fib(0)

