
#1 Control and
Environments

Roses are red
Violets are blue
While x < 61
Increment it by 2

TA: Jerry Chen (jerry.c@berkeley.edu)

mailto:jerry.c@berkeley.edu

Hello

• TA: Jerry Chen (jerry.c@berkeley.edu)

• Where to find resources

• Reminder on policies

If you're new, welcome!

mailto:jerry.c@berkeley.edu

Administrivia

• Labs and Projs are graded on completeness

• Homework is graded on effort

• Attendance is tracked for discussion, but not lab

Spring 2018

Dogs win! (again)

Fall 2017

Spring 2017

Fall 2016

If you weren't here for
disc00
v.gd/disc00

http://v.gd/disc00

Shameless plug

http://tinyurl.com/csmgit (Completely optional)

• Where: HP Auditorium in Soda

• When: Saturday 1pm-3pm (you can come late/leave early)

• Why: Industry standard for code backup and collab

Learn how to use Git

http://tinyurl.com/csmgit

Control

The missing link for all of computer science*

* Statement not endorsed by CS 61A staff pls don't get me in trouble

Computers aren't so complicated

Storage

Storage Arithmetic

Storage Arithmetic Control

Booleans

• Not negates

• And is truthy if both truthy

• Or is truthy if either is truthy

Basic operators

Booleans

False and 1 / 0

Short circuiting

Booleans

False and 1 / 0
True or 1 / 0

Short circuiting

if statement

 1 if n > 10:
 2 print("Big")
 3 elif n > 5:
 4 print("Medium")
 5 ...
 6 elif n > 0:
 7 print("Small")
 8 else:
 9 print("Nothing")

if statement

 1 if n > 10:
 2 print("Big")
 3 if n > 5:
 4 print("Medium")
 5 ...
 6 elif n > 0:
 7 print("Small")
 8 else:
 9 print("Nothing")

while loop

 1 x = 0
 2 while x < 61:
 3 x = x + 2
 4 print(x)

while loop

 1 x = 0
 2 while x < 61:
 3 x = x + 2
 4 print(x)

2

while loop

 1 x = 0
 2 while x < 61:
 3 x = x + 2
 4 print(x)

2
4

while loop

 1 x = 0
 2 while x < 61:
 3 x = x + 2
 4 print(x)

2
4
…
62

FizzBuzz

For every number from 1 to n:

• For multiples of three, print "Fizz"

• For multiples of five, print "Buzz"

• For multiples of both three and five print "FizzBuzz" only

• Otherwise, print the number

Warmup problem

 1 def fizzbuzz(n):
 2 i = 1
 3 while i <= n:
 4 if i % 3 == 0 and i % 5 == 0:
 5 print('FizzBuzz')
 6 if i % 3 == 0:
 7 print('Fizz')
 8 if i % 5 == 0:
 9 print('Buzz')
 10 else:
 11 print(i)
 12 i += 1

Fizzbuzz

 1 def fizzbuzz(n):
 2 i = 1
 3 while i <= n:
 4 if i % 3 == 0 and i % 5 == 0:
 5 print('FizzBuzz')
 6 elif i % 3 == 0:
 7 print('Fizz')
 8 elif i % 5 == 0:
 9 print('Buzz')
 10 else:
 11 print(i)
 12 i += 1

Fizzbuzz

Higher Order Functions

Higher Order Functions

Pass around functions like any other variable

• Function argument

• Return value

More possibilities for abstraction

Higher Order Functions

 1 def compose_twice(f, x):
 2 return f(f(x))
 3
 4 def square(x):
 5 return x * x
 6
 7 compose_twice(square, 2)

Example from Lab 01

