
Discussion 11:
SQL

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenda
SQL

• SELECT

• JOIN

• Recursion

• Aggregation

Announcements
Ants composition due 04/30

The final is Tues 05/09, submit the conflict form if
needed!

Last section might be a little bit different?

Discussion 12 Preview

Databases

Databases
Data — information about pretty much anything

A database is an ordered collection of data

Use tables to organize data

Databases show up everywhere!

Structured Query Language
(SQL)

(Pronounced "Ess Cue El" or "Sequel", not "Squeal")

Used to manage data stored in a database

A declarative language — broadly speaking, tell it
what we want, not how to do it

All "queries" (expressions) end in a semicolon ";"

Misc
Case insensitive — I capitalize keywords and
operators for clarity

For example, you could do:

SeLeCT * FroM reCORDs WherE SALARY > 0;

…

Please don't.

SQL
The SELECT statement create rows

• Use the UNION command to join two select rows

The CREATE TABLE expression saves a table for
later

Select
SELECT doesn't have to start from scratch

• SELECT FROM an existing table to create a new
one

Specify what columns to keep in your result

Filter using boolean expressions in the WHERE
clause

Joins
When we join two tables together, consider all
possible pairings:

Joins
The tricky part is deciding which pairings to keep
(filter in WHERE)

Joins
Of course, it gets more complicated (out of scope)

Aliasing
If we're joining with ourself (or a table with the same
column names), we may require aliasing

Not sure? Then use aliases

Problem Solving
Typical problem solving approach:

1. Figure out what data you need and join tables that
contain that data

2. Keep only the joins that make sense by filtering
using WHERE

3. Do any extra filtering and ordering to fit the problem

4. Put the columns you want to include

Problem Solving

SELECT <cols> FROM <tables> WHERE <conds> …

(1) Where is my data
coming from?

(2) What joins make
sense?

(3) Any other filtering?(4) What columns to
keep?

Recursive Select
Start with a base row (base case)

New rows based off previous ones (recursive step)

Use filter (WHERE) to determine when to stop

Use local WITH table to create recursive tables

Aggregation
Aggregation functions apply to groupings of rows
(default ALL rows)

Value

10

20

30

40

50

SELECT MIN(value) FROM data

10

Aggregation
We can specify groups using GROUP BY

Value Letter

10 A

20 B

30 A

40 B

50 A

SELECT MIN(value), letter
FROM data GROUP BY letter;

Value Letter

10 A
20 B

Aggregation
To filter by an aggregate, use HAVING instead of
WHERE

Value Letter

10 A

20 B

30 A

40 B

50 A

SELECT MIN(value), letter
FROM data GROUP BY letter
HAVING MIN(value) = 10;

Value Letter

10 A

