Discussion 08:

TA: Jerry Chen
Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenaa

Scheme
1. Syntax

2. Scheme lists

Announcements

MT 2 Grades are out. Submit regrades by next
Sunday

Ants due Thursday

HW 6 due Friday

e HW Party Th 6:30-8:30pm, 247 Cory

Scheme Preparedness

What's up with those
parentheses amirite

| could do a problem
after looking atan -
example or two

| could teach thisto
someone

Functional Programming

!Scala DOCUMENTATION DOWNLOAD COMMUNITY CONTRIBUTE ® Y

Object-Oriented Meets Functional

Have the best of both worlds. Construct elegant class
hierarchies for maximum code reuse and extensibility,
implement their behavior using higher-order functions. Or
anything in-between.

LEARN MORE

DOWNLOAD APl DOCS

http://www.scala-lang.org/

Scheme

Scheme — a functional language

* Dialect of the popular Lisp programming language

Scheme

Note: staff-provided scheme interpreter available at
scheme.cs61a.org

e R
scm> (demo 'songs)

¢ <name> [1L 1) to play a song
Available songs: ode-to-joy, sarias-song, kakariko-village, Ilm '\'MYV P

song-of-storms, fight-for-california

To load a song from a GitHub Gist, use:

¢ <gist-id> <name> [1L 1) lr\ ()\Y\
scm> ('song-of-storms) =
Preparing song... | hﬂ(?(txﬂ r

Loading accordion...
Loading tango_accordion...
Loading oboe...

Loading vibraphone...
Loading percussion...

Playing...

scm> |

(visSudliize COU€e) visuadllzes execution
(debug code) evaluates code step-by-step

http://scheme.cs61a.org

VS Python

Like Python, but...
harder?
* No iteration — recursion only!

* No mutation/mutable structures

VS Python

Like Python, but...
better?
* No finicky indentation

* No mutation/mutable structures (yup, this is both
good and bad!) — simpler code and behavior

VS Python

Like Python, but... gasterstrongen

not actually like Python?

* Where's iteration? (only expressions!)
* Where are objects?

* There are actually quite a few similarities,
however...

Scheme

Primitives

Numbers 1, 12, 3.1416

Truthy values #t, everything else

Falsy values #f

Scheme

Note on booleans

* The only false value is #f itself (our interpreter also
supports "talse”)

* Everything else is “truthy” (#t, O, empty list, etc.)

Scheme

Note "pretix notation” for operators

(square (+ S> D))

1. Eval operator 2. Eval operand(s)

3. Apply operator to operands

Python Scheme

3 + 0.14 + 0.0016

Scheme

(4 * 4) + 2000 (+

3.1410

Pl

Pl

3 # evals to False (= pi 3)

(+ 3 0.14 0.0010)

(x4 4)

2000)

(define pi 3.1416)

evals to false

Scheme

Python Scheme

1 and 2 and 3

(and 1 2 3)

return 0

not 1 or 2 or 1 / O (or (not 1) 2 (/ 1 0))
if pi > 3:
return 1
else: (1€ (> p1 3) 1 0)

Scheme

Python Scheme

lambda x, y: x + vy (lambda (x y) (+ x Vv))

(define square

— . *
square lambda x: x X (lambda (x) (* x x)))

Same as above (define (square x) (* X X))

Pailrs

A Scheme abstract data type
Much like linked lists in Python

Pairs have a ecar (first) and a edr (rest)

Build pairs by eonsing (Link) together two things

Scheme

Python Scheme

Link(1l, empty) (cons 1 nil)

Link(l, Link (2, empty)) (cons 1 (cons 2 nil))

Link (1, 2) # Not allowed! (cons 1 2) ; Allowed!

| IStS

Well-formed (“good looking™) lists end in nil

scm>(cons 1 (cons 2 nil))

(1 2)

Malformed lists are denoted by a dot
scm> (cons 1 2)

(L . 2)

Scheme

Symbols
* Quoted expressions are not evaluated
* Allow us to talk about Scheme, in Scheme!

* Also allow typing in "compound objects” (basically,
scheme lists)

| IStS

Quotes allow us to not evaluate a list, and just simplify
it Instead:

scm> '(1 . (2 . (3)))

(1 2 3)

The list function creates lists out of anything!
scm> (list '"list 1 '(2))

(List 1 (2))

| IStS

List is not (always) your friend

scm> (cons 1 '(2 3))

scm> (list 1 '"(2 3))

Check Your Understanding

1. Draw the diagram for the following:

scm> (list 1 '"(2 . (3)) '"(4) b5)

2. Convert the following diagram into a list:

WWGSD? Q1

scm> (define a 1)
scm> a

scm> (define b a)
scm> b

scm> (define c 'a)

SCm> C

scm>
scm>
scm>
25

scm>

Scm>

Scm>

WWGSD? Q2

(+ 1)
(% 3)
(+ (* 3 3)
(define a

a

b

(* 4 4))

(define b 3))

Scm>

scm>
(+ 1
10

scm>
-96
scm>

WWGSD? Q3

