
Discussion 08:
Scheme

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenda
Scheme

1. Syntax

2. Scheme lists

Announcements
MT 2 Grades are out. Submit regrades by next
Sunday

Ants due Thursday

HW 6 due Friday

• HW Party Th 6:30-8:30pm, 247 Cory

Scheme Preparedness

1

2

3

4

5

What's up with those
parentheses amirite

I could teach this to
someone

I could do a problem
after looking at an

example or two

Functional Programming

http://www.scala-lang.org/

Scheme
Scheme — a functional language

• Dialect of the popular Lisp programming language

Scheme
Note: staff-provided scheme interpreter available at
scheme.cs61a.org

http://scheme.cs61a.org

vs Python
Like Python, but…

harder?

• No iteration — recursion only!

• No mutation/mutable structures

vs Python
Like Python, but…

better?

• No finicky indentation

• No mutation/mutable structures (yup, this is both
good and bad!) — simpler code and behavior

vs Python
Like Python, but… (faster, stronger)

not actually like Python?

• Where's iteration? (only expressions!)

• Where are objects?

• There are actually quite a few similarities,
however…

Scheme
Primitives

Numbers 1, 12, 3.1416

Truthy values #t, everything else

Falsy values #f

Scheme
Note on booleans

• The only false value is #f itself (our interpreter also
supports "false")

• Everything else is “truthy” (#t, 0, empty list, etc.)

Scheme

(square (+ 5 5))

1. Eval operator 2. Eval operand(s)

3. Apply operator to operands

Note "prefix notation" for operators

Scheme
Python Scheme

3 + 0.14 + 0.0016 (+ 3 0.14 0.0016)

(4 * 4) + 2000 (+ (* 4 4) 2000)

pi = 3.1416 (define pi 3.1416)

pi == 3 # evals to False (= pi 3) # evals to false

Scheme
Python Scheme

1 and 2 and 3 (and 1 2 3)

not 1 or 2 or 1 / 0 (or (not 1) 2 (/ 1 0))

if pi > 3:
return 1

else:
return 0

(if (> pi 3) 1 0)

Scheme
Python Scheme

lambda x, y: x + y (lambda (x y) (+ x y))

square = lambda x: x * x (define square
(lambda (x) (* x x)))

Same as above (define (square x) (* x x))

Pairs
• A Scheme abstract data type

• Much like linked lists in Python

• Pairs have a car (first) and a cdr (rest)

• Build pairs by consing (Link) together two things

Scheme
Python Scheme

Link(1, empty) (cons 1 nil)

Link(1, Link(2, empty)) (cons 1 (cons 2 nil))

Link(1, 2) # Not allowed! (cons 1 2) ; Allowed!

Lists
Well-formed (“good looking”) lists end in nil

scm>(cons 1 (cons 2 nil))

(1 2)

Malformed lists are denoted by a dot

scm>(cons 1 2)

(1 . 2)

Scheme
Symbols

• Quoted expressions are not evaluated

• Allow us to talk about Scheme, in Scheme!

• Also allow typing in "compound objects" (basically,
scheme lists)

Lists
Quotes allow us to not evaluate a list, and just simplify
it instead:

scm> '(1 . (2 . (3)))

(1 2 3)

The list function creates lists out of anything!

scm> (list 'list 1 '(2))

(list 1 (2))

Lists
List is not (always) your friend

scm> (cons 1 '(2 3))

scm> (list 1 '(2 3))

Check Your Understanding
1. Draw the diagram for the following:

scm> (list 1 '(2 . (3)) '(4) 5)

2. Convert the following diagram into a list:

WWSD? Q1
scm> (define a 1)
a
scm> a
1
scm> (define b a)
b
scm> b
1
scm> (define c 'a)
c
scm> c
a

WWSD? Q2
scm> (+ 1)
1
scm> (* 3)
3
scm> (+ (* 3 3) (* 4 4))
25
scm> (define a (define b 3))
a
scm> a
b
scm> b
3

WWSD? Q3
scm> (if (or #t (/ 1 0)) 1 (/ 1 0))
1
scm> (if (> 4 3)
(+ 1 2 3 4) (+ 3 4 (* 3 2)))
10
scm> ((if (< 4 3) + -) 4 100)
-96
scm> (if 0 1 2)
1

