
Discussion 06:
Iterators and Generators

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenda
1. Feedback

2. Announcements

3. Iterators/Iterables

4. Generators

Feedback
tiny.cc/jerrydiscfb

Pls

http://tiny.cc/jerrydiscfb

Announcements
Exam prep OH

• Next week topics/times TBA

Manas' discussion is faster paced, and you will get
through all problems on the worksheet as well as the
extra problems. Thurs 5-6:30 in 3105 Etcheverry
Attendance will count as normal, so you can attend this
section instead of your normal section

Labs 0-3, HW 1-3 and Hog all graded, double check OK
and email me if there are any problems

Announcements
Midterm scores released, submit regrades by March 5th

Hog Project composition revisions due Sunday, March 5th

Exam prep OH - TA will give you time to work through some problems, give an overview of
the relevant topics, and walkthrough the problems.

• Next week topics TBA soon!

Homework 4 announced

• Homework party Mon 3/6 6:30-8:30pm

Manas' discussion is faster paced, and you will get through all problems on the worksheet
as well as the extra problems. Thurs 5-6:30 in 3105 Etcheverry. Attendance will count as
normal, so you can attend this section instead of your normal section

Labs 0-3, HW 1-3 and Hog all graded, double check OK and email me if there are any
problems

Delayed Expressions
"Lazy evaluation"

Real world application - streaming large data sets

3 1 4 1 5 9

lst = [3, 1, 4, 1, 5, 9]
t = iter(lst)
Now, repeatedly call print(next(t))

t

StopIteration

lst

Iterators/Iterables
Iterable — returns an iterator using iter()

Iterator — get next item in iterable using next()

• next() likely modifies some state

Iterators/Iterables
Miscellaneous

• Signal end of an iterator's sequence by raising a
StopIteration exception

• iter() on an iterator usually gives you the same
iterator back. Why?

Iterators/Iterables
"The iterable is a book, and the iterator is a
bookmark"

If something is iterable, we can get its iterator using
iter() and examine all its elements by repeatedly
calling next() on that iterator.

Keep in mind that iterators are usually one-time use.
Stepping through a sequence again means calling
iter() again, on the original iterable.

Generators
Generator functions return a generator, which is a
special iterator

• next will cause us to run until the next yield

• Return the expression at the yield, and pause

Check your understanding
class Naturals():
 def __iter__(self):

 current = 0
 while True:
 yield current
 current += 1

class Naturals():
 def __init__(self):
 self.current = 0

 def __iter__(self):
 while True:
 yield self.current
 self.current += 1

>>> nats = Naturals()
>>> nats_iterator1 = iter(nats)
>>> nats_iterator2 = iter(nats)
>>> next(nats_iterator1)
?
>>> next(nats_iterator1)
?
>>> next(nats_iterator2)
?

class Naturals():
 def __init__(self):
 self.current = 0

 def __iter__(self):
 while True:
 yield self.current
 self.current += 1

>>> nats = Naturals()
>>> nats_iterator1 = iter(nats)
>>> nats_iterator2 = iter(nats)
>>> next(nats_iterator1)
0
>>> next(nats_iterator1)
1
>>> next(nats_iterator2)
1

