
Discussion 05:
Mutation & Object Oriented

Programming

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Vote A
class Car:
 headlights = 2 # Class attributes
 wheels = 0

 def __init__(self, make):
 self.make = make # Instance attribute
 self.wheels = 4 # Override class here!

Vote B

Check Your Understanding
Which of the following are ok?

Agenda
1. List Mutation (questions)

2. OOP

3. Inheritance

Midterm Thoughts

"One test will not define who you are and whether or
not you'll be a successful computer scientist."

Announcements
Maps due next Tuesday (bonus point for 1 day
early)

Submit Hog revisions by 03/05

Submit midterm regrade requests by 03/05

Lab feedback tiny.cc/jerrylabfb

Discussion feedback tiny.cc/jerrydiscfb

http://tiny.cc/jerrylabfb
http://tiny.cc/jerrydiscfb

The Complete List
Midterm scores released, submit regrades by March 5th.

Hog Project grades and composition scores emailed out to all students. Composition revisions due Sunday, March 5th.

Maps released due Tues 2/28, extra point Mon 2/27

• Proj party Thurs 2/23, Mon 2/27 6:30-8:30pm in 247 Cory.

Exam prep office hours. TA will give you time to work through some problems, give an overview of the relevant topics,
and walkthrough the problems.

• See Piazza, this week Wed 4-6pm, Thurs 12-1pm, Sun 11-12pm.

Manas' discussion is faster paced, and you will get through all problems on the worksheet as well as the extra
problems. Thurs 5-6:30 in 3105 Etcheverry. Attendance will count as normal, so you can attend this section instead of
your normal section.

Labs 0-3, HW 1-3 and Hog all graded, please double check OK and email me if there are any problems.

Guerrilla Section Trees, Linked Lists and Mutable Values Sat 12-3pm in 247 Cory

No lecture Friday

Free One on One tutoring available. Sign up on Friday at 3:30 on Piazza.

List Mutation
"Static" lists are great, but…

• Having to copy information can be wasteful!

• Would like to modify our existing lists

• Downsides?

List Mutation
Operation Description

lst.append(x) Add x to the end of lst

lst[1] = x Assign x to index 1

lst = lst + [x] Append x to a copy of lst

lst.remove(x) Remove first occurrence of x

lst.pop(2) Remove and return element at index 2

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
>>> lst1 == lst2 #compares each value
True
>>> lst1 is lst2 #compares references
False
>>> lst2 = lst1
>>> lst2 is lst1
True
>>> lst1.append(4)
>>> lst1
[1, 2, 3, 4]
>>> lst2
[1, 2, 3, 4]

>>> lst2[1] = 42
>>> lst2
[1, 42, 3, 4]
>>> lst1 = lst1 + [5]
>>> lst1 == lst2
False
>>> lst1
[1, 42, 3, 4, 5]
>>> lst2
[1, 42, 3, 4]
>>> lst2 is lst1
False

Object Oriented
Programming

Objects/Classes
Objects

• A (hopefully) more intuitive way of representing
data

• A commonly used method of organizing a
program

• Formally split "global state" and "local state"

Classes
• A “blueprint”

• Objects are an instance of a class

More Vocab
Attributes - data

• Class attributes is shared by the class

• Instance attributes belong to an instance

Methods - behavior

Class vs Instance
• Instance attributes take precedence over class

attributes

• However, new instance defaults to the class
attributes unless they are changed in the
constructor or somehow modified elsewhere.

Attributes
class Car:
 headlights = 2 # Class attributes
 wheels = 0

 def __init__(self, make):
 self.make = make # Instance attribute
 self.wheels = 4 # Override class here!

__init__

 def __init__(self, name, lat, lon):
 self.name = name
 self.lat = lat
 self.lon = lon

 def make_city(self, name, lat, lon):
 return [name, lat, lon]

Methods
A bound method combines a function and an instance

Dot expressions used to pass in an instance into “self”

sedan is "implicitly self”

Inheritance
Write once, reuse forever

Reuse code by applying “is-a” relationships

Animal

Cat Dog

Cat is an Animal and Dog is an Animal but Cat is not a Dog

Inheritance
Can access/use attributes and methods from your
parent class

• Don’t have to use them, can choose to override

• However, parent’s behavior is present by
default

Check Your Understanding
Which of the following are ok?

Odds & Ends
Which of the following are ok?

Y
Y
N
N

Y

Y

N

N

