
Discussion 03:
Sequences and Trees

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenda
1. Attendance

2. Announcements

3. Check Your Understanding

4. Sequences (fast)

5. Trees

6. Data Abstraction (skipped, see slides later)

Announcements
• Guerrilla sections Sat 12-3pm in 257 Cory

• Homework 3 released, due 2/14

• Homework party (check website)

• Midterm on 2/17 7-9pm, fill out alternate form by
Sunday

• Discussion next week is midterm review

Some Perspective
30%

30%

40%

WWPD

Environment Diagrams

Everything else

From MT1, Fall 2015

14%

86%

Midterm 1

Everything else

Total Grade

Check Your Understanding
1.
[[x for x in range(y)] for y in range(3)]

2.
def pairs_to_dict(pairs):
 """
 Convert a list of pairs into a dictionary.

 >>> p = [['c', 6], ['s', 1], ['c', 'a']]
 >>> pairs_to_dict(p)
 {'c': 'a', 's': 1}
 """

Sequences

Sequences
Variables (names) generally referred to a single item

A sequence is a collection of many items

• Lists: Python's implementation of the abstraction

Lists
Length

Can easily retrieve the length of a list:
>>> x = [1, 2, 3]
>>> len(x)
3
>>> y = [x, 4, 5] # Does nesting matter?
>>> len(y)
3

Lists
Element Selection

Get an item at an index using bracket notation
>>> x = [1, 2, 3]
>>> x[0]
1
>>> x[0] = 10
>>> x
[10, 2, 3]

Slicing
Important tool for generating sublists

Anatomy of a slice:

lst[2:10:3]

Starting index (inclusive)
Ending index (exclusive)

Step size

Excluding any part of the slice invokes the default value:
0 for start (positive step), len(lst) for end (positive step), step 1

Lists
Slicing Examples
>>> x = [1, 2, 3]
>>> x[0:2]
[1, 2]
>>> x[0:2] == x[:2]
True
>>> x[0:2:-1]
[]
>>> x[2:0:-1]
[3, 2]

Lists
Odds & Ends

for can be used to loop through lists
>>> x = [1, 2, 3]
>>> for elem in x: #elem can be any name
... print(elem)
1
2
3

Lists
Odds & Ends

Check membership using in
>>> x = [1, 2, 3]

>>> 1 in x

True

>>> “bananas” in x

False

>>> 1 in [x]

False

Lists
Odds & Ends

range is a useful function that returns a sequence
>>> x = range(0, 3) # 0, 1, 2
>>> range(0, 3, 1) == range(3) # Like slicing?
True
>>> for n in x:
... print(n)
0
1
2

Lists Questions
WWPD - Page 2, Q1
>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])
1 3
>>> len(a)
5
>>> 2 in a
False
>>> 4 in a
True
>>> a[3][0]
2

Lists Questions
WWPD - Page 3, Q1
>>> a = [3, 1, 4, 2, 5, 3]
>>> a[1::2]
[1, 2, 3]
>>> a[:]
[3, 1, 4, 2, 5, 3]
>>> a[4:2]
[]
>>> a[1:-2]
[1, 4, 2]
>>> a[::-1]
[3, 5, 2, 4, 1, 3]

Lists
List Comprehension

Quick way of making lists by applying expressions to
elements in another sequence
[<map exp> for <name> in <iter> if <filter>]
>>> [x for x in range(4)]
[0, 1, 2, 3]
>>> [x * 2 for x in range(4) if x % 2 == 1]
[2, 6]

Lists Questions
WWPD - Page 4, Q1
>>> [i + 1 for i in [1, 2, 3, 4, 5] if i %
2 == 0]
[3, 5]
>>> [i * i - i for i in [5, -1, 3, -1, 3]
if i > 2]
[20, 6, 6]
>>> [[y * 2 for y in [x, x + 1]] for x in
[1, 2, 3, 4]]
[[2, 4], [4, 6], [6, 8], [8, 10]]

Trees

Trees
Storing things in order like a list is boring…

In real life, you see trees everywhere!

• Taking notes

• Directory structure on your computer

• Nature and stuff, I guess

Trees

1

2 3

4 5 6 7

8 9

Root

Leaves

Branch
Labels

Nodes

Credit: Based on Prof. DeNero's tree diagram [Fa 16 CS 61A]

Trees
Constructor:

tree(label, branches=[])

Selectors:

label(t), branches(t), is_leaf(t)

Why do these matter?
These sequences are important!

Data structures I use:* Probably doing something wrong
5%

Trees
15%

Dictionaries
20%

Lists
60%

*Numbers totally made up (kinda)

Data Abstraction
Focus on what happens, not how it happened

• Abstract data type (ADT) - represents an object/
thing in code. Abstract since we (as the user) don’t
need to know how it was built and how it works!

• Constructor - creates an ADT

• Selector - retrieve information from an ADT

What's the big deal?
I'll just break a data abstraction. What's the worst that
could happen?

In all seriousness, consistency is important!

