
Discussion 02:
More Environments and

Recursion

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenda
1. Feedback!

2. Attendance

3. Announcements

4. Check Your Understanding

5. Recursion

6. Environment diagrams again (slides skipped in class)

7. Lambdas (slides skipped in class)

Thanks for your feedback! Some common trends:

Too much talking, not enough "doing"

• I will blab a bit less

• If I go through slides too quickly, check them out
later online!

Attendance
Sign in at tiny.cc/jerrydisc

http://tiny.cc/jerrydisc

Announcements
Homework 2 due Tuesday

• HW Party in 247 Cory Monday 6:30pm-8:30pm

Sign ups for CSM sections are open! Sections start
next week

Piazza — please, no public code!

Check Your Understanding
square = lambda x: x * x

def test(f, x):
 if f(x) % 2 == 0:
 return lambda g, x: g(square, x)
 else:
 return f(x)

print(test(lambda s: s // 2, 20)(test, 7))

Recursion

Drawing Hands by M. C. Escher

Recursion
Recursion, what is it good for?

• Recursive data structures later on

• Can be used to reason about tricky problems,
but…

• In practice, iteration is often faster and cheaper

Recursion
Components of a recursive function

• Base case, a simple stopping condition

• Recursive calls on smaller problem

• Putting it together: solve our prob using recursive
result

Leap of faith: assume our recursive function solves
any smaller version of the problem

Recursion
Factorial example
def factorial(n):
 if n == 0:
 return 1
 return n * factorial(n - 1)

Recursion
Fast Exponentiation
def exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return exp(b ** 2, n / 2)
 else:
 return b * exp(b, n - 1)

Recursion
What's Wrong?
def hailstone(n):
 print(n)
 if n == 1:
 return
 elif n % 2 == 0:
 hailstone(n - 1)
 else:
 hailstone(n - 1)

Recursion
What's Wrong?
def hailstone(n):
 print(n)
 if n == 1:
 return
 elif n % 2 == 0:
 n = n // 2
 hailstone(n - 1)
 else:
 n = 3 * n + 1
 hailstone(n - 1)

Tree Recursion
Recursive functions can sometimes require more than
one call!

Fib(n) = Fib(n - 1) + Fib(n - 2)

Very powerful, but also potentially very slow (why?)

Useful when you want to represent choices (e.g.
taking one stair or two stairs)

Environment Diagrams
New: Names can also be bound to functions!

Some rules:

• Function call: create and number new frame (f1, f2, etc.)
— always start in global frame

• Assignment: write variable name and expression value

• Def statements: record function name and bind function
object. Remember parent frame!

• Frames return values upon completion (Global is special)

Environment Diagrams
From Kevin Chen's Fall 2015 Review (https://goo.gl/Z6GNwi)

x = 2
def dread(pirate):
 x = 30
 def roberts(westley):
 x = 400
 return westley + pirate(x)

 return roberts(x)

dread(lambda spot: x + spot)

https://goo.gl/Z6GNwi

A Lambda Detour

A Lambda Detour

(lambda x, y: x + y * y)(4, 5)

Lambda definition Lambda call

Result (after currying):
(lambda x = 4, y = 5: x + y * y)

