
CS61A Discussion 8:
Scheme

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Attendance
Form: tinyurl.com/jerrydisc

For the weekly question,
please complete the quiz (will be
posted after discussion)

(Of course, please only check in if you
showed up!)

http://tinyurl.com/jerrydisc

Agenda
1. Week in Review

2. Scheme

Week In Review
Ants - Due Today!

(Mini) Quiz - Due Friday

Lab 8 (Sets, Binary Trees) - Due Friday

Hw5 - Due Monday 3/28

Mt2 - 7-9pm, Wednesday after Spring Break (3/30)

• Submit alternate time request ASAP!

Functional Programming

http://www.scala-lang.org/

Scheme
Last week: object oriented programming

This week: Scheme — a functional language

• Dialect of the popular Lisp programming
language

Scheme
Note: staff-provided scheme interpreter available at
scheme.cs61a.org

http://scheme.cs61a.org

Scheme
Like Python, but…

harder?

• No iteration — recursion only!

• No mutation/mutable structures

Scheme
Like Python, but…

better?

• No finicky indentation

• No mutation/mutable structures (yup, this is both
good and bad!) — simpler code and behavior

Scheme
Like Python, but… (faster, stronger)

actually completely different?

• Only expressions!

• Call expressions, lambdas, etc.

• There are actually quite a few similarities,
however…

Scheme
Primitives

Numbers 1, 12, 3.1416

TRUE #t

FALSE #f

Scheme
Note on booleans

• The only false value is #f itself

• Everything else is “truthy” (#t, 0, empty list, etc.)

Scheme
Functions

• Like Python, parentheses denote a function call

• Eval operator, eval operands, apply

• We use polish prefix notation (you’ll get used to
it!)

Scheme
Python Scheme

3 + 0.14 + 0.0016 (+ 3 0.14 + 0.0016)

(4 * 4) + 2000 (+ 2000 (* 4 4))

pi = 3.1416 (define pi 3.1416)

pi == 3 # evals to False (= pi 3) # evals to #f

Scheme
Symbols

• Quoted expressions are not evaluated

• Allow us to talk about Scheme, in Scheme! (more
on this in the proj)

• Also allow compound objects (more on this when
we talk about pairs)

Scheme
Python Scheme

1 and 2 and 3 (and 1 2 3)

not 1 or 2 or 1 / 0 (or (not 1) 2 (/ 1 0))

if pi > 3:
return 1

else:
return 0

(if (> pi 3) 1 0)

Scheme
Python Scheme

lambda x, y: x + y (lambda (x y) (+ x y))

square = lambda x: x * x (define square
(lambda (x) (* x x)))

Same as above (define (square x) (* x x))

Scheme
Pairs

• A Scheme abstract data type

• Much like linked lists in Python

• Pairs have a first (car) and a rest (cdr)

• Build pairs by linking (cons) together two things

Scheme
Python Scheme

Link(1, empty) (cons 1 nil)

Link(1, Link(2, empty)) (cons 1 (cons 2 nil))

Link(1, 2) # Not allowed! (cons 1 2) ; Allowed!

Scheme
Well-formed (“good looking”) lists end in nil

scm>(cons 1 (cons 2 nil))

(1 2)

Malformed lists are denoted by a dot

scm>(cons 1 2)

(1 . 2)

Scheme
Quotes allow us to not evaluate a list, and just simplify
it instead:

scm> '(1 . (2 . (3)))

(1 2 3)

The list function creates lists out of anything!

scm> (list 'list 1 ''(2))

(list 1 '(2))

