CS61A Discussion 8:
Scheme

TA: Jerry Chen
Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/csb61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Attendance

Form: tinyurl.com/jerrydisc

For the weekly question,
please complete the quiz (will be
posted after discussion)

(Of course, please only check in if you
showed up!)

http://tinyurl.com/jerrydisc

Agenaa

1. Week In Review

2. Scheme

Week In Review

Ants - Due Today!

(Mini) Quiz - Due Friday

Lab 8 (Sets, Binary Trees) - Due Friday

Hw5 - Due Monday 3/28

Mt2 - 7-9pm, Wednesday after Spring Break (3/30)

* Submit alternate time request ASAP!

Functional Programming

!Scala DOCUMENTATION DOWNLOAD COMMUNITY CONTRIBUTE ® Y

Object-Oriented Meets Functional

Have the best of both worlds. Construct elegant class
hierarchies for maximum code reuse and extensibility,
implement their behavior using higher-order functions. Or
anything in-between.

LEARN MORE

DOWNLOAD APl DOCS

http://www.scala-lang.org/

Scheme

Last week: object oriented programming
This week: Scheme — a functional language

* Dialect of the popular Lisp programming
language

Scheme

Note: staff-provided scheme interpreter available at
scheme.cs61a.org

- (download 'url) to load code from a url

scm> (¢ (library 'math) and (library 'strings) load libraries for math and strings X X
Use ((demo 'chess) if you want to play a game or (demo 'paint) if you want to draw a pictu

Files ¢ (draw-pair pair) draws a box-and-pointer diagram

Ranks ¢ (diagram) draws an environment diagram

Game ar (visualize code) to visualize execution «{ Z '

Scm> (debug code) to evaluate code step-by-step

SIS Full Usage Guide - Submit Bugs ‘
scm>

scm> scm> (upload) —

scm> scm> ’ r E

scm> Code uploaded. ((\ r Q?

scm> Download with (download 'map-switch-linux-mutable)

scm> Downloads expire after 12 hours -_—

sem> scm> (download 'map-switch-linux-mutable)

*x
ST sch]> (demo ‘'paint)
S Click and drag on the canvas to draw. l
sci Use (pensize n) to change the size and (color 'color) to change the color.

scm> scm> (demo ‘'paint)

scm> Click and drag on the canvas to draw.

4
scm> Use (pensize n) to change the size and (color 'color) to change the color. Q—
scm> scm> (debug code) LT
scm> Debugging: code V\

scm> (step) to step or (continue) to continue to next breakpoint

scm>
scm>
scm>

scm> scm> (clear)

scm> scm> (clear)
scm> scm>|

http://scheme.cs61a.org

Scheme

Like Python, but...
harder?
* No iteration — recursion only!

* No mutation/mutable structures

Scheme

Like Python, but...
better?
* No finicky indentation

* No mutation/mutable structures (yup, this is both
good and bad!) — simpler code and behavior

Scheme

Like Python, but... gasterstrongen
actually completely different?
* Only expressions!
* Call expressions, lambdas, etc.

* There are actually quite a few similarities,
however...

Scheme

Primitives
Numbers 1, 12, 3.1416
TRUE #t
FALSE #f

Scheme

Note on booleans
* The only false value is #f itself

* Everything else is “truthy” (#t, O, empty list, etc.)

Scheme

Functions
* Like Python, parentheses denote a function call
* Eval operator, eval operands, apply

* We use polish prefix notation (you'll get used to
it!)

Python Scheme

3 + 0.14 + 0.0016

Scheme

(4 * 4) + 2000 (+ 2000

Pl

Pl

3 # evals to False (= pi 3)

(+ 3 0.14 + 0.0016)

(x4 4))

3.1416 (define pi 3.1416)

evals to #f

Scheme

Symbols
* Quoted expressions are not evaluated

* Allow us to talk about Scheme, in Scheme! (more
on this in the proj)

* Also allow compound objects (more on this when
we talk about pairs)

Scheme

Python Scheme

1 and 2 and 3

(and 1 2 3)

return 0

not 1 or 2 or 1 / O (or (not 1) 2 (/ 1 0))
if pi > 3:
return 1
else: (1€ (> p1 3) 1 0)

Scheme

Python Scheme

lambda x, y: x + vy (lambda (x y) (+ x Vv))

(define square

— . *
square lambda x: x X (lambda (x) (* x x)))

Same as above (define (square x) (* X X))

Scheme

Pairs
* A Scheme abstract data type
* Much like linked lists in Python

e Pairs have afirst (car) and a rest (cdr)

* Build pairs by linking (cons) together two things

Scheme

Python Scheme

Link(1l, empty) (cons 1 nil)

Link(l, Link (2, empty)) (cons 1 (cons 2 nil))

Link (1, 2) # Not allowed! (cons 1 2) ; Allowed!

Scheme

Well-formed (“good looking™) lists end in nil

scm>(cons 1 (cons 2 nil))

(1 2)

Malformed lists are denoted by a dot
scm> (cons 1 2)

(L . 2)

Scheme

Quotes allow us to not evaluate a list, and just simplify
it Instead:

scm> '(1 . (2 . (3)))

(1 2 3)

The list function creates lists out of anything!
scm> (list '"list 1 "' (2))

(List 1 '"(2))

