
CS61A Discussion 7:
Orders of Growth and

Trees
TA: Jerry Chen

Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Attendance
Form: tinyurl.com/jerrydisc

Please remember to checkin! Only ~17 from
last week

For the weekly question,
please tell me your least favorite part of hw04.

(Of course, please only check in if you showed
up!)

http://tinyurl.com/jerrydisc

Agenda
1. Week in Review

2. Composition

3. Orders of Growth

4. Trees (with mutation)

Week In Review
Hw4

• Was challenging!

Ants - Due next Thursday

• It’s ok, I haven’t started either :)

Lab 7 (Recursive Objects) - Due Friday

Mt2 - 7-9pm, Wednesday after Spring Break (3/30)

• Submit alternate time request ASAP!

Hog composition

Composition
Computers don’t care how “neat” your code is

Humans (coworkers, boss, future you?) do care!

Composition
Basic Principles

• Pretend you are reading the code for the first time

• Simple > Complex

• Pick meaningful names

• (Personal opinion) give operators room to breathe!

Composition
Composition is not as important as correctness.
In my opinion:

• Correctness > Efficiency > Composition

“Done is better than perfect” - Facebook

Composition & style guide are at: http://cs61a.org/
articles/resources.html

http://cs61a.org/articles/resources.html

Orders of Growth
Context change — from writing programs to
evaluating their performance

How do we describe how fast a program is?

Orders of Growth
Why do we care?

Orders of Growth
One way is through orders of growth. How does a
program respond to a growing input size?

Ω
ϴ
O

Orders of Growth

How does this scale with respect to size of input n?

Linear - O(n)

Orders of Growth
Growth Rate (Big-O) How does it feel?

1 (“constant”) Great!

log N (“logarithmic”) Still really good!

N (“linear”) Not bad

N2, N3 (“poly time”) Acceptable

2N (“exponential”) Ugh… “intractable” growth

N! (“evil” “factorial”) Same as above… but worse?

Orders of Growth

http://bigocheatsheet.com/img/big-o-complexity.png

Orders of Growth

CS 61A Sp 16 Lecture 19

Orders of Growth
Fantastic tool, but it has limitations:

Graphs generated by WolframAlpha

Orders of Growth
But Big-O still wins in the end!

Orders of Growth
Simplify Answer

O(3n) O(n) — ignore const factors

O(n3 + 1000n2) O(n3) — larger term dominates

O(log n + n) O(n) — larger term dominates

O(n log n + n) O(n log n) — larger term dominates

Orders of Growth
Question** Answer

Is factorial O(n!)? O(log n)? Yes, No. n! greatly upper bounds it. log n
is not a sufficient upper bound.

O(log2n) > O(log10n) No! Use change of base formula.

O(n log(n8)) > O(n2 log(n3)) No — use log rules to get O(n log n) vs
O(n2 log n)

O(n log n) < O(log nlog n) Yes — RHS is nlog log n (try to introduce an
exponent)

**Caveat — these are NOT mathematically precise ways of describing growth relationships!

Mutable Trees

https://www.makemymerch.in/image/cache/data/groot-artwork-612x459.png

Mutable Trees
Can still build trees in much the same way:

Tree(<label>, [Tree(…), Tree(…), …])

Selectors now also allow assignment:

t = Tree(1)

t.label = 10

Mutable Trees
Interface:

Tree(label, [list_of_children])

Tree.label

Tree.branches (or Tree.children)

Tree.is_leaf(self)

