CS61A Discussion 7: Orders of Growth and Trees

TA: Jerry Chen Email: jerry.c@berkeley.edu TA Website: jerryjrchen.com/cs61a

Attendance

Form: tinyurl.com/jerrydisc

Please remember to checkin! Only ~17 from last week

For the weekly question, please tell me your least favorite part of hw04.

(Of course, please only check in if you showed up!)

Agenda

- 1. Week in Review
- 2. Composition
- 3. Orders of Growth
- 4. Trees (with mutation)

Week In Review

Hw4

• Was challenging!

Ants - Due next Thursday

• It's ok, I haven't started either :)

Lab 7 (Recursive Objects) - Due Friday

Mt2 - 7-9pm, Wednesday after Spring Break (3/30)

• Submit alternate time request ASAP!

Hog composition

Composition

Computers don't care how "neat" your code is

Humans (coworkers, boss, future you?) do care!

@font-face{font-family:'footable';src:url('fonts/footable.eot');src:url('fonts/footable.eot?#iefix') format('embedded-opentype'),url('fonts/footable.woff') format('woff'),url('fonts/footable.svg#footable) format('svg');font-weight:normal;font-style:normal}@media screen and (-webkit-min-device-pixel-ratio:0)
{@font-face{font-family:'footable';src:url('fonts/footable.svg#footable') format('svg');font-weight:normal;font-style:normal}}.footable';src:url('fonts/footable.svg#footable') format('svg');font-weight:normal;font-style:normal}.footable';src:url('fonts/footable.svg#footable') format('svg');font-weight:normal;font-style:normal}].footable{width:100%}.footable.breakpoint>tbody>tr.
footable-detail-show>td{border-bottom:0}.footable.breakpoint>tbody>tr.hootable-detail-show>td{border-bottom:0}.footable.breakpoint>tbody>tr.hootable-detail-show>td{border-bottom:0}.footable.breakpoint>tbody>tr.hootable-detail-show>td{border-bottom:0}.footable.breakpoint>tbody>tr.hootable.breakpoint>tbody>t (.footable-row-detail){cursor:pointer}.footable.breakpoint>tbody>tr>td.footable-cell-detail{background:#eee;border-top:0}.footable.breakpoint>tbody>tr>td>span.footable-toggle{di splay:inline-block;font-family:'footable';speak:none;font-style:normal;font-weight:normal;font-variant:normal;text-transform:none;-webkit-font-smoothing:antialiased;padding-righ
t:5px;font-size:14px;color:#888}.footable.breakpoint>tbody>tr>td>span.footable-toggle:before{content:"\e000"}.footable.breakpoint.toggle-circle>tbody>tr.footable-detail-show>td> span.footable-toggle:before{content:"\e005"}.footable.breakpoint.toggle-circle>tbody>tr>td>span.footable-toggle:before{content:"\e004"}.footable.breakpoint.toggle-circle-filled> tbody>tr.footable-detail-show>td>span.footable-toggle:before{content:"\e003"}.footable.breakpoint.toggle-circle-filled>tbody>tr>td>span.footable-toggle:before{content:"\e002"}.footable.breakpoint.toggle-circle-filled>tbody>tr>td>span.footable-toggle:before{content:"\e002"}.footable.breakpoint.toggle-circle-filled>tbody>tr>td>span.footable-toggle:before{content:"\e002"}.footable.breakpoint.toggle-circle-filled>tbody>tr>td>span.footable-toggle:before{content:"\e002"}.footable.breakpoint.toggle-circle-filled>tbody>tr>td>span.footable-toggle:before{content:"\e002"}.footable.breakpoint.toggle-circle-filled>tbody>tr>td>span.footable-toggle:before{content:"\e002"}.footable.breakpoint.toggle-circle-filled>tbody>tr>td>span.footable-toggle:before{content:"\e002"}.footable.breakpoint.toggle-circle-filled>tbody>tr>td>span.footable-toggle:before{content:"\e002"}.footable.breakpoint.toggle-circle-filled>tbody>tr>td>span.footable-toggle:before{content:"\e002"}.footable.breakpoint.toggle:before{content:"\e002"}.footable.breakp ootable.breakpoint.toggle-square>tbody>tr.footable-detail-show>td>span.footable-toggle:before{content:"\e007"}.footable.breakpoint.toggle-square>tbody>tr>td>span.footable-toggle :before{content: "\e006"}.footable.breakpoint.toggle.square-filled>tbody>tr.footable-detail-show>td>span.footable-toggle:before{content: "\e009"}.footable.breakpoint.toggle.square-filled>tbody>tr>td>span.footable-toggle:before{content: "\e008"}.footable.toggle:before{content: " point.toggle-arrow-circle-filled>tbody>tr.footable-detail-show>td>span.footable-toggle:before{content:"\e00b"}.footable.breakpoint.toggle-arrow-circle-filled>tbody>tr>td>span.fo otable-toggle:before{content:"\e00d"}.footable.breakpoint.toggle-arrow-tiny>tbody>tr.footable-detail-show>td>span.footable-toggle:before{content:"\e01f"}.footable.breakpoint.tog gle-arrow-tiny>tbody>tr>td>span.footable-toggle:before{content:"\e021"}.footable.breakpoint.toggle-arrow-alt>tbody>tr.footable-detail-show>td>span.footable-toggle:before{content :"\e017"}.footable.breakpoint.toggle-arrow-alt>tbody>tr>td>span.footable-toggle:before{content:"\e019"}.footable.breakpoint.toggle-medium>tbody>tr>td>span.footable-toggle{font-s ize:18px}.footable.breakpoint.toggle-large>tbody>tr>td>span.footable-toggle{font-size:24px}.footable>thead>tr>th{-webkit-touch-callout:none;-webkit-user-select:none;-khtml-userselect:none;-moz-user-select:-moz-none;-ms-user-select:none;user-select:none}.footable>thead>tr>th.footable-sortable:hover{cursor:pointer}.footable>thead>tr>th.footable-sortable pan.footable-sort-indicator:before{content:"\e013"}.footable>thead>tr>th.footable-sorted-desc>span.footable-sort-indicator:before{content:"\e012"}.footable>thead>tr>th>span.foot able-sort-indicator{display:inline-block;font-family:'footable';speak:none;font-style:normal;font-weight:normal;font-variant:normal;text-transform:none;-webkit-font-smoothing:an tialiased; padding-left:5px}.footable>thead>tr>th>span.footable-sort-indicator:before{content:"\e022"}.footable>tfoot .pagination{margin:0}.footable.no-paging .hide-if-no-paging{ display:none}.footable-row-detail-inner{display:table}.footable-row-detail-row{display:table-row;line-height:1.5em}.footable-row-detail-group{display:table}.footable-rowsize:1.2em;font-weight:bold}.footable-row-detail-name{display:table-cell;font-weight:bold;padding-right:.5em}.footable-row-detail-value{display:table-cell}.footable-odd{backgrou MIT Liconco | git io/normalizo */ article acide details figure

Composition

Basic Principles

- Pretend you are reading the code for the first time
- Simple > Complex
- Pick meaningful names
- (Personal opinion) give operators room to breathe!

Composition

Composition is not as important as correctness. In my opinion:

• Correctness > Efficiency > Composition

"Done is better than perfect" - Facebook

Composition & style guide are at: <u>http://cs61a.org/</u> articles/resources.html

Context change — from writing programs to evaluating their performance

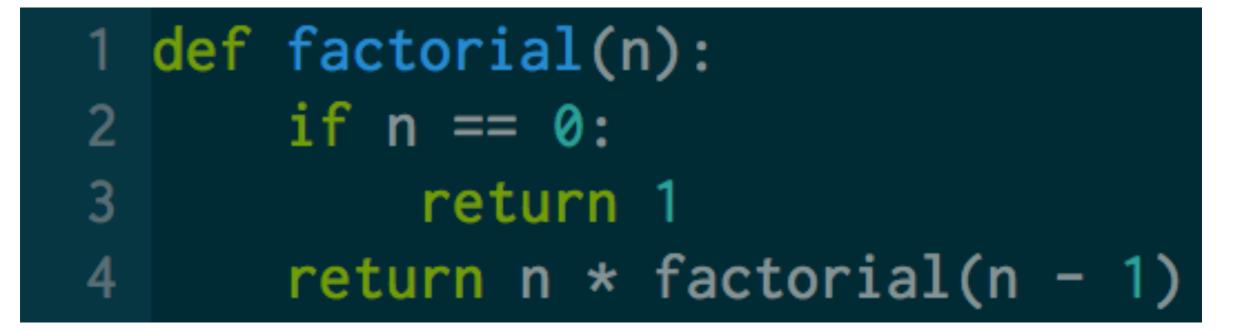
How do we describe how fast a program is?

Why do we care?

In the news

Google's DeepMind defeats legendary Go player Lee Se-dol in historic victory

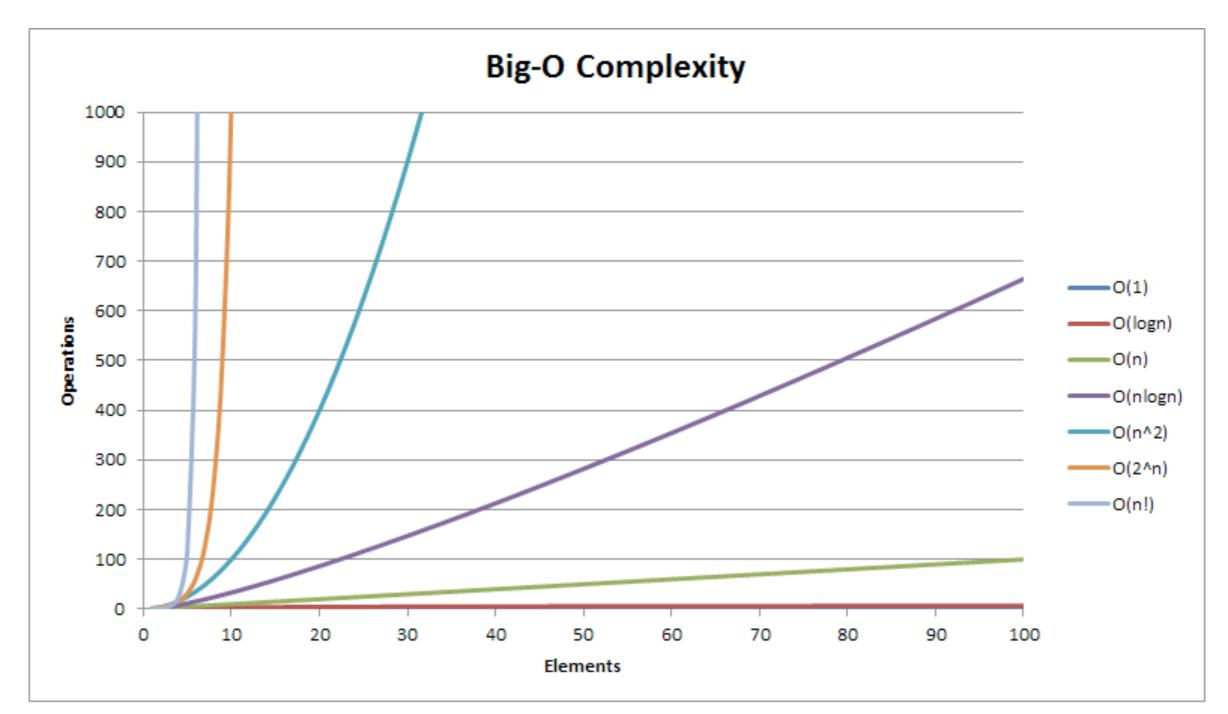
The Verge - 1 day ago **DeepMind** founder Demis Hassabis expressed "huge respect for Lee Se-dol and his ...


Match 1 - Google DeepMind Challenge Match: Lee Sedol vs AlphaGo YouTube - 1 day ago

Google's Deepmind AI beats Go world champion in first match Engadget - 23 hours ago

More news for deepmind

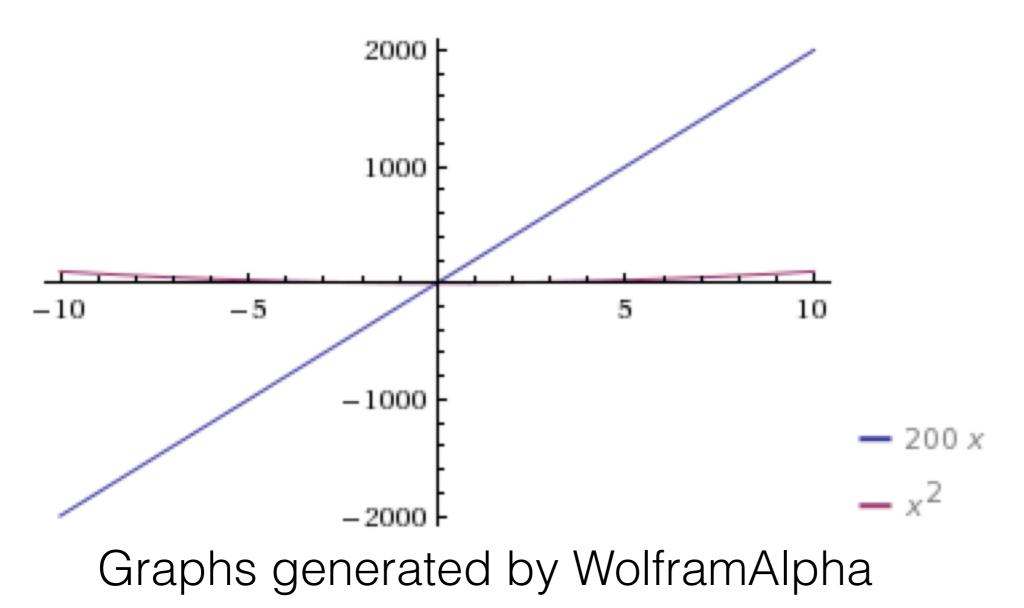
One way is through orders of growth. How does a program respond to a growing input size?


Ω

How does this scale with respect to size of input n?

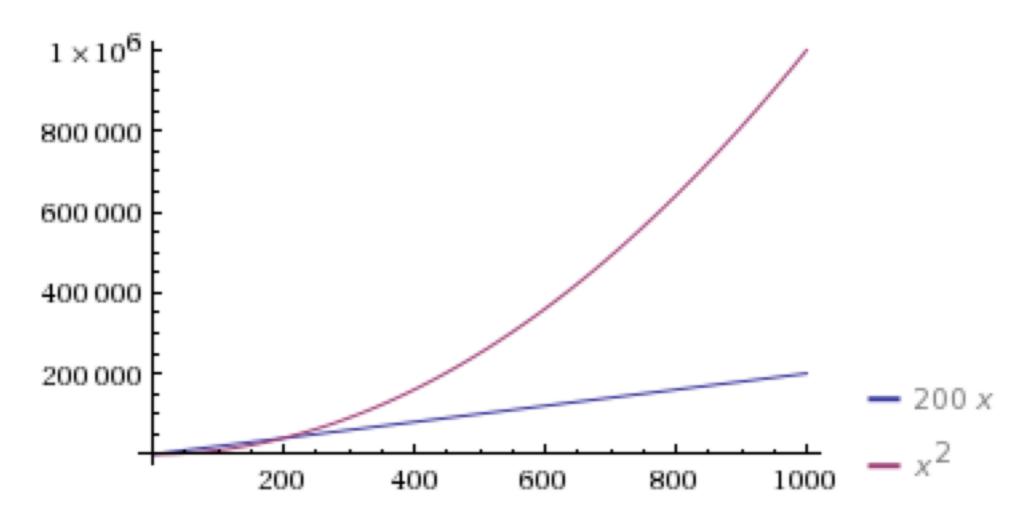
```
Linear - O(n)
```

Growth Rate (Big-O)	How does it feel?
1 ("constant")	Great!
log N ("logarithmic")	Still really good!
N ("linear")	Not bad
N ² , N ³ ("poly time")	Acceptable
2 ^N ("exponential")	Ugh "intractable" growth
N! ("evil" "factorial")	Same as above but worse?


http://bigocheatsheet.com/img/big-o-complexity.png

Time (μ sec) for		Max N Possible in		
problem size N	1 second	1 hour	1 month	1 century
$\lg N$	10^{300000}	$10^{1000000000}$	$10^{8 \cdot 10^{11}}$	$10^{9 \cdot 10^{14}}$
\overline{N}	10^{6}	$3.6 \cdot 10^{9}$	$2.7\cdot10^{12}$	$3.2\cdot10^{15}$
$N \lg N$	63000	$1.3 \cdot 10^{8}$	$7.4 \cdot 10^{10}$	$6.9\cdot10^{13}$
N^2	1000	60000	$1.6 \cdot 10^{6}$	$5.6\cdot 10^7$
N^3	100	1500	14000	150000
2^N	20	32	41	51

CS 61A Sp 16 Lecture 19


Fantastic tool, but it has limitations:

Plot:

But Big-O still wins in the end!

Plot:

Simplify	Answer
O(3n)	O(n) — ignore const factors
O(n ³ + 1000n ²)	O(n ³) — larger term dominates
O(log n + n)	O(n) — larger term dominates
O(n log n + n)	O(n log n) — larger term dominates

**Caveat — these are NOT mathematically precise ways of describing growth relationships!

Orders of Growth

Question**	Answer
ls factorial O(n!)? O(log n)?	Yes, No. n! greatly upper bounds it. log n is not a sufficient upper bound.
$O(log_2n) > O(log_{10}n)$	No! Use change of base formula.
$O(n \log(n^8)) > O(n^2 \log(n^3))$	No — use log rules to get O(n log n) vs O(n² log n)
O(n log n) < O(log n ^{log n})	Yes — RHS is n ^{log log n} (try to introduce an exponent)

Mutable Trees

https://www.makemymerch.in/image/cache/data/groot-artwork-612x459.png

Mutable Trees

Can still build trees in much the same way:

Tree(<label>, [Tree(...), Tree(...), ...])

Selectors now also allow assignment:

- t = Tree(1)
- t.label = 10

Mutable Trees

Interface:

Tree(label, [list_of_children])

Tree.label

Tree.branches (or Tree.children)

Tree.is_leaf(self)