
CS61A Discussion 6:
Inheritance & Nonlocal

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Attendance

Form: tinyurl.com/jerrydisc

For the weekly question, please
complete the quiz.

http://tinyurl.com/jerrydisc

Agenda
1. Week in Review

2. Feedback

3. Nonlocal

4. OOP

Week In Review
Maps!

Lab6! (Nonlocal and OOP)

Hw4!

Hog composition

Feedback
Based on feedback:

• Some more time on problems

• Walking through a few of the shorter problems
together first

• Lecture will also be more compact as a result

Feedback

Nonlocal
Why do we need nonlocal?
What will be the result of the output below?

A 10

B 20

C 12

D 22

E Error

>>> x = mdfy(20)
>>> x

Nonlocal
Why do we need nonlocal?
What will be the result of the output below?

A 10

B 20

C 12

D 22

E Error

>>> x = mdfy(20)
>>> x

Nonlocal
What’s happening in inner()?

• We created a local variable x and assigned 10.

• Then, we incremented that local variable by 2.

• The one in “mdfy” is unchanged!

Nonlocal
Let’s try again.
What will happen here?

A 10

B 20

C 30

D 40

E Error

>>> x = mdfy2(20)
>>> x

Nonlocal
Let’s try again.
What will happen here?

>>> x = mdfy2(20)
>>> x

A 10

B 20

C 30

D 40

E Error

Nonlocal
Uh oh. This is even worse!

• Can lookup x from parent frame

• Cannot also bind to an x in the current frame

• Confusingly, this will give an “unbound local
error” claiming we referenced x before
assignment (Read 2.4.4 in your textbook)

Nonlocal
As you may have guessed, nonlocal is required.
Here’s the proper syntax:

>>> x = mdfy3(20)
>>> x
21

Nonlocal
Exercise Caution:

• Nonlocal functions are non-pure

• As a reminder:

Pure fxnIn

Out

Non-pure fxnIn

Out

Side-effects
Side effects could be printing, nonlocal

assignment, writing to a file, etc.

Object Oriented
Programming

http://www.kamyacademy.com/wp-content/uploads/2014/01/
object-orientated-programming-langs.png

Objects/Classes
Objects

• A (hopefully) more intuitive way of representing
data

• Common interface means powerful
abstraction (more on this later)

Objects/Classes
Classes

• A “blueprint”

• Objects are an
instance of a class

http://velvetchainsaw.com/wp-content/
uploads/2010/06/blueprint.jpg

Objects
• Attributes - data!

• Class attributes is shared by the class

• Instance attributes belong to an instance

• Methods - behavior!

• Callable by instances

Attributes

Class vs Instance
Differences between class and instance:

• Instance variables take precedence over class
variables (instances are more specific than
classes)

• However, new instance defaults to the class
variables unless they are changed in the
constructor (common) or somehow modified
elsewhere.

Methods
Objects have a bound method associated with them

Dot expressions used to pass in an instance into
“self”

This is implicitly “self”

Inheritance
Write once, reuse forever

Reuse code by applying “is-a” relationships

Animal

Cat Dog

Cat is an Animal and Dog is an Animal but Cat is not a Dog

Inheritance
Can access/use attributes and methods from your
parent class

• Don’t have to use them, can choose to override

• However, parent’s behavior is present by
default

Inheritance
Beware: not everything should be inherited (“is-a”)!

Sometimes, composition or “has-a” relationships are
better.

Dog is an Animal and has a chew toy.

Animal

DogChew
toy

