
CS61A Discussion 3:
Data Abstraction and

Sequences
TA: Jerry Chen

Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenda
1. Week in Review

2. Sequences & Lists

3. Slicing & list comprehension

4. Data abstraction

Week In Review
Hw 2 is due next Tuesday

• How many have started hw2?

How was lab 3? (Lambdas/HOFs, Recursion)

Midterm 1 is next Thursday!

• In-lab review survey: tinyurl.com/jerrymt1labreview

• Next discussion will be a special review session

• TA sanctioned review session Friday, 5-7pm in 155 Dwinelle

Free one-one-one tutoring sign-ups available! (Check Piazza)

http://tinyurl.com/jerrymt1labreview

Data
So far, we’ve been able to store singular values

x = 10

Great. What if we want to store a bunch of things?

• For example, a group of temperatures over a week

Enter sequences!

Sequences
Sequences have length and element selection

Lists are a Python data type that groups together
many things

x = [10, 20, 30] # all numbers

y = [10, “twenty”, [30]] # num, str, lst

Lists
Length

Can easily retrieve the length of a list:
>>> x = [1, 2, 3]
>>> len(x)
3
>>> y = [x, 4, 5] # Does nesting matter?
>>> len(y)
3

Lists
Element Selection

Get an item at an index using bracket notation
>>> x = [1, 2, 3]
>>> x[0]
1
>>> x[0] = 10
>>> x
[10, 2, 3]

Slicing
Important tool for generating sublists

Anatomy of a slice:

lst[2:10:3]

Starting index (inclusive)
Ending index (exclusive)

Step size

Excluding any part of the slice invokes the default value:
0 for start, len(lst) - 1 for end, 1 for step

Lists
Slicing
>>> x = [1, 2, 3]
>>> x[0:2]
[1, 2]
>>> x[0:2] == x[:2]
True
>>> x[0:2:-1]
[]
>>> x[2:0:-1]
[3, 2]

Lists
Odds & Ends

Check membership using in
>>> x = [1, 2, 3]
>>> 1 in x
True
>>> “bananas” in x
False

Lists
Odds & Ends

for can be used to loop through lists
>>> x = [1, 2, 3]
>>> for elem in x: #elem can be any name
... print(elem)
1
2
3

Lists
Odds & Ends

range is a useful function that returns a sequence
>>> x = range(0, 3) # 0, 1, 2
>>> range(0, 3, 1) == range(3) # Like slicing?
True
>>> for n in x:
... print(n)
0
1
2

Lists
List Comprehension

Quick way of making lists by applying expressions to
elements in another sequence
[<map exp> for <name> in <iter> if <filter>]
filter is optional

>>> [x for x in range(4)]
[0, 1, 2, 3]
>>> [x * 2 for x in range(4) if x % 2 == 1]
[2, 6]

Data Abstraction
Focus on what happens, not how it happened

• Abstract data type (ADT) - represents an object/
thing in code. Abstract since we (as the user) don’t
need to know how it was built and how it works!

• Constructor - creates an ADT

• Selector - retrieve information from an ADT

Lists Questions
WWPP - Page 2, Q1
>>> a = [1, 5, 4, [2, 3], 3]
>>> print(a[0], a[-1])
1 3
>>> len(a)
5
>>> 2 in a
False
>>> 4 in a
True
>>> a[3][0]
2

Lists Questions
WWPP - Page 3, Q1
>>> a = [3, 1, 4, 2, 5, 3]
>>> a[1::2]
[1, 2, 3]
>>> a[:]
[3, 1, 4, 2, 5, 3]
>>> a[4:2]
[]
>>> a[1:-2]
[1, 4, 2]
>>> a[::-1]
[3, 5, 2, 4, 1, 3]

