
CS61A Discussion 2:
Environment Diagrams

and Recursion
TA: Jerry Chen

Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenda
1. Feedback!

2. Week in Review

3. Environment Diagrams

4. Lambdas (brief)

5. Recursion

Feedback!
Thanks for your feedback! Some changes:

• Trying some minor format changes

• All lec first, then problems later

• Better clarity on which problems will be covered
(disc is too long to do all the questions!)

Week In Review
CSM sections for 61A are available for signup!

Hog is due this Thursday!

• How many have started/finished with Hog?

• How many are finished with Hog?

How was lab 2? (Lambdas/HOFs, Recursion)

Attendance

Form: tinyurl.com/jerrydisc

Weekly question is the quiz.
Optional: add what you think of last
week’s and this week’s quiz.
(Weekly question is not judged based on correctness)

http://tinyurl.com/jerrydisc

Environments
Q: What is an environment?

A: Environments represent a context for execution.

• Environments store things such as name-value
bindings

• Visualize environments using environment
diagrams

Environment Diagrams
Consists of many frames that track program state

Some rules:

• Function call: create and number new frame (f1, f2, etc.)
— always start in global frame

• Assignment: write variable name and expression value

• Def statements: record function name and bind function
object. Remember parent frame!

• Frames return values upon completion (Global is special)

A Lambda Detour

A Lambda Detour

(lambda x, y: x + y * y)(4, 5)

Lambda definition Lambda call

Result (after currying):
(lambda x = 4, y = 5: x + y * y)

Recursion

Drawing Hands by M. C. Escher

Recursion

Fractals: Mandelbrot Set and Sierpinski Triangle

Recursion

Recursion
A recursive function can call itself,

which can call itself,

which can call itself,

…

Recursion
Components of a recursive function

• Base case: some simple stopping condition

• Recursive calls: call ourself

Must be simpler than the original problem

Leap of faith: assume our recursive function solves
any simpler version of the problem

Recursion
Exponentiation example from lab:
def exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return exp(b ** 2, n / 2)
 else:
 return b * exp(b, n - 1)

Tree Recursion
Recursive functions can sometimes require more than
one call!

Fib(n) = Fib(n - 1) + Fib(n - 2)

Very powerful, but also potentially very slow (why?)

