
CS61A Discussion 10:  
Iterators and Streams

TA: Jerry Chen 
Email: jerry.c@berkeley.edu 

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a


Attendance
Form: tinyurl.com/jerrydisc 

For the weekly question,  
- Please submit your quiz answers.
Nice work on last week's quiz!

(Of course, please only check in if you 
showed up!)

http://tinyurl.com/jerrydisc


Agenda
1. Week in Review 

2. Iterators/Iterables 

3. Streams



Week In Review
Lab 11 (Iterators and Generators) - Due Friday 

Hw7 - Due Friday

Proj2 - Due 4/25 

• Complete Part 1 of the Scheme project by 
Monday for 1 EC point 

Maps Composition - Resubmit by Friday



Iterators/Iterables
Hopefully you got the basics from lab & hw… 

Iterator

• Steps through a sequence one item at a time using 
next 

• Implies that calling next will modify some state 

Iterable

• Returns an iterator using iter



Iterators/Iterables
If something is iterable, we can get its iterator using 
iter and examine all its elements by repeatedly 
calling next on that iterator. 

Keep in mind that iterators are usually one-time use. 
Stepping through a sequence again means calling 
iter again.



Iterators/Iterables
Miscellaneous 

• Signal end of an iterator's sequence by raising a 
StopIteration exception



Generators
Upon request (they're not in the worksheet)



Streams
Like a linked list, except evaluated lazily 

• Don't make rest until we ask for it 

• After we ask for it, remember the result

• Rules (functions) tell us how to create the next 
element



Streams
Some stuff is the same: 

• car gets the front of a stream 

• nil is the empty stream 

Some stuff is different: 

• cons-stream like cons, but rest is lazily evaluated 

• cdr-stream like cdr, but tells stream to do the 
actual computation if it hasn't already 


