4\

er focis

\J

i am radyly to lerr


mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenaa

1. Points

2. Currying

3. WWPD

4. Environment Diagrams

5. Rest of the Exam



Some Perspective

Midterm 1

< WWPD

< Environment Diagrams

Everything else

< Everything else

From MT1, Fall 2015 Total Grade



What Would Python Display?

Basic Facts

® Evaluated in Order Iﬂ the R rtern lambda ki k(atD)
Python interpreter, not run e
rom a py flle B ;izilz(;hallo’)

Expression Interactive Output

- If it errors, include
5%5 25

everything before the error = ;

1/0 ERROR

print(1, print(2))

e \arious other rules are on

your exam

argentina(0)




What Would Python Display?

Strategies

 Practice! A |ot.

* Draw (hasty) environment

diagrams

def

def

def

square(x):
return x * X

argentina(n):
print (n)
if n > O:
return lambda k: k(n+1)
else:
return 1 / n

germany (n) :

if n > 1:
print(’hallo’)

if argentina(n-2) >= 0:
print (’bye’)

return argentina(n+2)

Expression Interactive Output
55 25
print(5) 5

1/0 ERROR

print(1, print(2))

argentina(0)




Currying

Currying is like onions:

3 Ogres dreglike Onions*

They-bothmakeyou—-cry They have layers!



_.ambdas and Currying

(lambda x, y: x + v * vy)|(4, 5)

Lambda definition Lambda call

Result (after currying):
(lambda x = 4, vy = 5: X +y * y)



More Currying

(lambda m, a: lambda: lambda p: m + a + p)|((2, 4) () (4)
L ambda definition Lambda call

m= 2, a =4

>(lambda: lambda p: m + a + p) () (4)
>>(lambda p: m + a + p) (4)
p =4

>>>m + a + p



Practice

def haskell dream() :
arg = (lambda: lambda s: s + 2)
return (lambda y: y () (10)) (arg)

>>> haskell dream()

feds

Answer: 12




Review

The Return Value
(lambda v: y () (10)) (lambda: lambda s: s + 2)

y = lambda: lambda s: s + 2

V() = lambda s: s + 2
y()(10) = 12



—nvironment Diagrams

Basic Facts

* |f you practice, it's
probably the closest thing
to free points

* If it errors, you (likely) did
something wrong!

|
|3
\7
|

c
(¢

c
m

c
(1]

—— func k(g, b) [parent=Globall]



—nvironment Diagrams

Strategies

|
|3
\7
|

 Practice! A |ot.

|
|
|
Return Value ‘

 Don't duplicate names

* Don't forget to label parent
frames!

|
|
|
Return Value ‘

* Fill in ALL return values

|
|
|
Return Value ‘

———» func k(g, b) [parent=Global]



Practice

def haskell nightmare () :
carrot = 10
potato = 20
def onions (onions) :
def carrot (onions, carrot):

return lambda onions: onions (carrot)
return carrot

cook = lambda onions: onions + carrot + potato
return onions (carrot) (onions, potato) (cook)

>>> haskell nightmare()
feds



Review

>>> haskell nightmare()
50

Environment Diagram: http://goo.gl/7eQHKM



http://goo.gl/7eQHKM

Coding Questions

—Xpect lots of recursion
~Three possibilities:

» Skeleton code
 Cross-outs

* Free write (unlikely?)



Coding Questions

(b) (5 pt) Fill in the blanks of the following functions defined together in the same file. Assume that all

Skeleton Code

o Almost definitely gonna
happen
e [teration and recursion are
fair game .
e Look for clues in the
skeleton

e Test after you think you are
done!

combine (left, right):

arguments to all of these functions are positive integers that do not contain any zero digits.
For example, 1001 contains zero digits (not allowed), but 1221 does not (allowed). You may assume that
reverse is correct when implementing remove.

"""Return all of LEFT’s digits followed by all of RIGHT’s digits."""

factor = 1

while factor <= right:
factor = factor * 10

return left * factor + right

reverse (n):
"""Return the digits of N in reverse.

>>> reverse (122543)
345221

if n < 10:
return n
else:

return combine (

remove (n, digit):

"""Return all digits of N that are not DIGIT,
>>> remove (243132, 3)
2412

>>> remove (243132,
4313

>>> remove (remove (243132,
433

2)
0, 2)
removed = 0

while n != O0:

removed =

return reverse (removed)

for DIGIT less than 10.



Coding Questions

class STree(Tree):

"""A smart tree that knows its depth and whether or not it is
rOSS'ou S balanced.

>>> s = STree(6, STree(2, STree(1)), STree(7))
>>> s.depth

3

>>> s.is_balanced

True

o I:irS't, get a general feel > ::i:f)zl.lright = STree(4, STree(3), STree(5))

4

of everything

def __init__(self, entry, left=None, right=None):

Tree.__init__(entry, left, right)

o CrOSS Out any‘thing tha‘t Tree.__init__(self, entry, left, right)

self .entry = entry

ObVlOUSly Stands Out self.left = left

self .right = right

self .depth depth (self)

self.is_balanced = is_balanced(self)

* Test after you think you i dagen = o

self.is_balanced = is_balanced
are done!
] def depth(self):
return depth(self)
@property
def is_balanced(self):

return is_balanced(self)



Coding Questions

(b) (4 pt) The function equal takes two differentiable single-argument functions £ and g and returns an x for
which £ (x) is equal to g(x). Implement the support function equal_update that completes the implemen-

]
tation. You may use derivative above, along with newton_update from your study guide. You cannot use
any assignment (=), conditional (if), for, or while statements.

def equal(f, g):
"""Return an x for which f(x) == g(x).

>>> def cube(x):
return x * X * X

>>> def plus_six(x):

* Probably not gonna

>>> equal (cube, plus_six)
2.0

h a e n def close(x):
return approx_eq(f(x), g(x))

return improve (equal_update(f, g), close)

def equal_update(f, g):

"""Return an update function that completes the implementation of equal."""

 Treat like a lab/homework
problem

* Test after you think you
are donel



Write It

1. (Don't) panic!
2. Read the doctests and instructions very carefully
3. Before looking at blanks, plan out your own solution

* More often than not, you can fit your solution to the
blanks!



lest It

1. Check domain and range
* Do inputs/outputs make sense?
2. Check the margins
* Did | loop one too many/tew times?
3. Check the syntax
o Correct number of parens, commas, etc”?

4. Check it all again



Etficient Worktlow

Shortcut: Assume everything has a “nice” solution

Imperfect |ldea

\
)‘ \
\\ Imperfect 1= Wrong

Working Idea —»< Testing \
\

V|

Solution



Recursion

Rules of Recursion
1. Define a base case
* |fit's not iImmediately obvious, pick one anyways

2. Break the problem into smaller but similar
subproblems

3. Actually solve the problem



Mutual Recursion

def mouse (n) :
if n >= 10:
squeak = n // 100
n = frog(squeak) + n % 10
return n
>>> mouse(21023508479)

def frog(croak): 72?77
1f croak == 0: 314159
return 1
else:

return 10 * mouse (croak + 1)

From Andrew Huang'’s 61A Wiki: https://www.ocf.berkeley.edu/~shidi/
cs61a/wiki/Guides#Miscellaneous 2



https://www.ocf.berkeley.edu/~shidi/cs61a/wiki/Guides#Miscellaneous_2

Review

def mouse (n) :
if n >= 10:
squeak = n_ // 100 “Starting” n gets updated

n =+frog(squeak) + n %
return n

10
™ Get the last digit

All but last two! (what's lost?)
def frog(croak):

1f croak == E%ﬁt Hiqit
return 1 T up a digl D

Increments last digit
else: /// / J

return 10 * mouse (croak + 1)

>>> mouse(21023508479)



Cheat Sheets

'Less IS more’
What to write?

1. Nothing — study guide is quite
comprehensive!

2. Code examples

3. Rules — env diagrams, recursion
fundamentals



-inal Logistics

—at a meal or a light snack beforehand!

| hope you had a good night's sleep

Arrive on time

Also, It would

or early, not Berkeley time

ne great it you could remember

discussion tir

e/TA ;)



~inal Thoughts

Go back and look at the "perspective” slide

| will repeat this before (and after) every exam —

"One test will not define who you are and whether or
not you'll be a successful computer scientist.”



