Discussion 09:
Delayed Expressions

TA: Jerry Chen
Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/cs61a



mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

1

2

3.

A

5

Agenaa

. Attendance

. Announcements
lterators/Iterables (fast)
. Generators (fast)

. Streams



Attengance
Sign in at bit.do/jerrydisc

OR

Come to me for check-in


http://bit.do/jerrydisc

Announcements

Want to talk/listen”? EECS community election debrief
in 521 Cory from 1210 2 pm



Announcements

Hw 11 due today, Hw 12 due next Tues
Scheme Proj checkpoint 1 today!

My OH today are 4-5pm only



Delayed Expressions

"Lazy evaluation”




iterators/lterables

Iterable
* Returns an iterator using iter ()
Iterator

* Returns the next item in sequences using
next ()

» next () (probably) will modify some state



iterators/lterables

"The iterable Is a book, and the iterator Is a
bookmark"

If something is iterable, we can get its iterator using
iter () and examine all its elements by repeatedly

calling next () on that iterator.

Keep in mind that iterators are usually one-time use.
Stepping through a sequence again means calling
iter () again.



iterators/lterables

Miscellaneous

* Signal end of an iterator's sequence by raising a
StopIteration exception

» iter () of an iterator usually gives you the same
iterator back



(Generators

Generator functions return a generator -> a special
iterator

* next will cause us to run until the next yield

* Return the expression at the yield, and pause



Streams

Like a linked list, except evaluated lazily
* Don't make rest until we ask for it
 After we ask for it, remember the result

* Rules (functions) tell us how to create the next
element



Streams

Some stuff is the same:
* car gets the front of a stream
* nil Is the empty stream
Some stuff is different:
* cons-stream like cons, but rest is lazily evaluated

e cdr-stream like cdr, but tells stream to do the
actual computation if it hasn't already



