
Discussion 09: 
Delayed Expressions

TA: Jerry Chen 
Email: jerry.c@berkeley.edu 

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a


Agenda
1. Attendance 

2. Announcements 

3. Iterators/Iterables (fast) 

4. Generators (fast) 

5. Streams



Attendance
Sign in at bit.do/jerrydisc 

OR 

Come to me for check-in

http://bit.do/jerrydisc


Announcements
Want to talk/listen? EECS community election debrief 
in 521 Cory from 12 to 2 pm



Announcements
Hw 11 due today, Hw 12 due next Tues 

Scheme Proj checkpoint 1 today! 

My OH today are 4-5pm only



Delayed Expressions
"Lazy evaluation"



Iterators/Iterables
Iterable

• Returns an iterator using iter()

Iterator

• Returns the next item in sequences using 
next() 

• next() (probably) will modify some state



Iterators/Iterables
"The iterable is a book, and the iterator is a 
bookmark" 

If something is iterable, we can get its iterator using 
iter() and examine all its elements by repeatedly 
calling next() on that iterator. 

Keep in mind that iterators are usually one-time use. 
Stepping through a sequence again means calling 
iter() again.



Iterators/Iterables
Miscellaneous 

• Signal end of an iterator's sequence by raising a 
StopIteration exception 

• iter() of an iterator usually gives you the same 
iterator back



Generators
Generator functions return a generator -> a special 
iterator

• next will cause us to run until the next yield 

• Return the expression at the yield, and pause



Streams
Like a linked list, except evaluated lazily 

• Don't make rest until we ask for it 

• After we ask for it, remember the result

• Rules (functions) tell us how to create the next 
element



Streams
Some stuff is the same: 

• car gets the front of a stream 

• nil is the empty stream 

Some stuff is different: 

• cons-stream like cons, but rest is lazily evaluated 

• cdr-stream like cdr, but tells stream to do the 
actual computation if it hasn't already 


