Discussion 07

TA: Jerry Chen
Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenaa

. Attendance

. Feedback

. Announcements
. Scheme (fast)

. Check Your Understanding

Attengance
Sign in at bit.do/jerrydisc

OR

Come to me for check-in
Also, for David: http://tinyurl.com/
CS61A-110-feedback

http://bit.do/jerrydisc
http://tinyurl.com/CS61A-110-feedback

Announcements

MT 2 Grades are out
* As always, feel free to email me to chat!
Hw 9 due Halloween (O000000000000)

All other grades on Ok! P/NP deadline is this Friday

1958

Functional Programming

!Scala DOCUMENTATION DOWNLOAD COMMUNITY CONTRIBUTE ® Y

Object-Oriented Meets Functional

Have the best of both worlds. Construct elegant class
hierarchies for maximum code reuse and extensibility,
implement their behavior using higher-order functions. Or
anything in-between.

LEARN MORE

DOWNLOAD APl DOCS

http://www.scala-lang.org/

Scheme

Scheme — a functional language

* Dialect of the popular Lisp programming language

Scheme

Note: staff-provided scheme interpreter available at
scheme.cs61a.org

e Eill X
H"’\P 7\ Eemam B

scm> (demo ‘songs) !
¢ <name> [1L 1) to play a song m fg\
Available songs: ode-to-joy, sarias-song, kakariko-village, YY

song-of-storms, fight-for-california

To load a song from a GitHub Gist, use: I r\ O\Y\
¢ <gist-id> <name> [1L 1D -

scm> ('song-of-storms) | htq (P(L
Preparing song...

Loading accordion...

Loading tango_accordion...

Loading oboe...

Loading vibraphone...

Loading percussion...

Playing...

scm> |

e

(debug code) evaluates code step-by-step

Full Usage Guide - Code Editor - Submit Bugs

scm> (demo 'paint)

Click and drag on the canvas to draw.

Use (pensize n) to change the size and (color 'color) to change the color.
scm> |

http://scheme.cs61a.org

Scheme

Like Python, but...
harder?
* No iteration — recursion only!

* No mutation/mutable structures

Scheme

Like Python, but...
better?
* No finicky indentation

* No mutation/mutable structures (yup, this is both
good and bad!) — simpler code and behavior

Scheme

Like Python, but... gasterstrongen

not actually like Python?

* Where's iteration”? (only expressions!)
* Where are objects”

* There are actually quite a few similarities,
however...

Scheme

Primitives

Numbers 1, 12, 3.1416

Truthy values #t, everything else

Falsy values #f

Scheme

Note on booleans

* The only false value is #f itself (our interpreter also
supports "talse”)

* Everything else is “truthy” (#t, O, empty list, etc.)

Scheme

Functions
* Like Python, parentheses denote a function call
* Eval operator, eval operands, apply

* We use polish prefix notation (you'll get used to
it!)

Python Scheme

3 + 0.14 + 0.0016

Scheme

(4 * 4) + 2000 (+

3.1410

Pl

Pl

3 # evals to False (= pi 3)

(+ 3 0.14 0.0010)

(x4 4)

2000)

(define pi 3.1416)

evals to false

Scheme

Symbols
* Quoted expressions are not evaluated

* Allow us to talk about Scheme, in Scheme! (more
on this in the proj)

* Also allow compound objects (more on this when
we talk about pairs)

Scheme

Python Scheme

1 and 2 and 3

(and 1 2 3)

return 0

not 1 or 2 or 1 / O (or (not 1) 2 (/ 1 0))
if pi > 3:
return 1
else: (1€ (> p1 3) 1 0)

Scheme

Python Scheme

lambda x, y: x + vy (lambda (x y) (+ x Vv))

(define square

— . *
square lambda x: x X (lambda (x) (* x x)))

Same as above (define (square x) (* X X))

Scheme

Pairs

A Scheme abstract data type
Much like linked lists in Python

Pairs have a first (car) and a rest (cdr)

Build pairs by linking (cons) together two things

Scheme

Python Scheme

Link(1l, empty) (cons 1 nil)

Link(l, Link (2, empty)) (cons 1 (cons 2 nil))

Link (1, 2) # Not allowed! (cons 1 2) ; Allowed!

Scheme

Well-formed (“good looking™) lists end in nil

scm>(cons 1 (cons 2 nil))

(1 2)

Malformed lists are denoted by a dot
scm> (cons 1 2)

(L . 2)

Scheme

Cons vs List

Scheme

Quotes allow us to not evaluate a list, and just simplify
it Instead:

scm> '(1 . (2 . (3)))

(1 2 3)

The list function creates lists out of anything!
scm> (list '"list 1 "' (2))

(List 1 '"(2))

Check Your Understanding

Draw the diagram for the following:

>(list 1 '"(2 . (3)) '"(4) 5)

Convert the following diagram into a list:

scm>
scm>
scm>
25

scm>

sScm>

SCcm>

WWSD?

(+ 1)
(% 3)
(+ (* 3 3)
(define a

a

b

(* 4 4))

(define b 3))

Scm>

scm>
(+ 1
10

scm>
-96
scm>

