Discussion 03:
Sequences and Trees

TA: Jerry Chen
Email: jerry.c@berkeley.edu
TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenaa

. Attendance

. Midterm 1 Thoughts

. Announcements

. Check Your Understanding
. Data Abstraction (fast)

. SEQUENCES

. Trees (fast)

Attendance

Sign in at bit.do/jerrydisc
OR

Please put your name, SID, and
emall on the sign-in sheet.

http://bit.do/jerrydisc

Midterm 1 Thoughts

| will repeat this before (and after) every exam —

"One test will not define who you are and whether or
not you'll be a successful computer scientist.”

Please feel free to chat with me (or any other
course staff) if you have any questions or
concerns!

Announcements

Midterm 1 on Gradescope: regrade requests by
Sunday night

HW 4 released and due Thursday

HW 5 released and due next Tuesday
Maps released and due 9/29, +1 pt. by 9/28

* Proj party next Wednesday (details on website)

Check Your Understanding

1.
[[x for x 1n range(y)] for vy in range (3)]

2.

def pairs to dict(pailrs):
Convert a list of pairs 1nto a dictionary.
>>> P = [['C'/ 6]/ ['S'/ 1]/ ['C'/ 'a']]
>>> palrs to dict (p)
{ I C I . I a 1 , 1 g 1 .]_ }

mwiiw

Data Abstraction

Focus on what happens, not how It happened

* Abstract data type (ADT) - represents an object/
thing in code. Abstract since we (as the user) don't
need to know how it was built and how it works!

e Constructor - creates an ADT

 Selector - retrieve information from an ADT

What's the big deal?

I'll just break a data abstraction. What's the worst that
could happen?

ide_rational(x, y)
eturn [x[@]*y[1],

priil*ye]]

In all seriousness, consistency is important!

Sequences

Variables (names) generally referred to a single item
A sequence is a collection of many items

* Lists: Python's implementation of the abstraction

01234
20789

J(x)

) ©

| IStS

Length

Can easily retrieve the length of a list:

>>> x = [1, 2, 3]

>>> len (x)

3

>>> vy = [x, 4, 5] # Does nesting matter?

>>> len (y)
3

| IStS

Element Selection

Get an item at an index using bracket notation
>>> x = [1, 2, 3]

>>> x[0]

1

>>> x[0] = 10

>>> %

(10, 2, 3]

Slicing
Important tool for generating sublists

Anatomy of a slice:

lst[Z:lO:BJ\

/ I Step size
Ending index (exclusive)

Starting index (inclusive)

Excluding any part of the slice invokes the default value:
O for start (positive step), len(lst) for end (positive step), 1 for step

| IStS

Slicing Examples

>>> x = [1, 2, 3]
>>> x[0:2]

[1, 2]

>>> x[0:2] == xX[:2]
True

>>> x[0:2:-1]
[]

>>> x[2:0:-1]
[3, 2]

| IStS

Odds & Ends

for can be used to loop through lists

>>> x = [1, 2, 3]

>>> for elem in x: #elem can be any name
print (elem)

| IStS

Odds & Ends

Check membership using in
>>> x = [1, 2, 3]

>>> 1 1n X

True

>>> “pbananas” 1n X
F'alse

>>> 1 1n [X]

F'alse

| IStS

Odds & Ends

range IS a useful function that returns a sequence

>>> x = range (0, 3) # 0, 1, 2

>>> range (0, 3, 1) == range(3) # Like slicing?
True

>>> for n 1n Xx:

print (n)

| Ists Questions

WWPD - Page 2, Q1

>>> a = [1, 5, 4, [2, 31, 3]
>>> print(al[0], al[-1])

1 3

>>> len (a)

5

>>> 2 1n a
False

>>> 4 1n a
True

>>> a[3][0]
2

| Ists Questions

WWPD - Page 3, Q1
>>> a = [3, 1, 4, 2, 5, 3]
>>> af[l::2]

[1, 2, 3]

>>> al:]

[3, 1, 4, 2, 5, 3]
>>> al[d:2]

[]

>>> a[l:-2]

[1, 4, 2]

>>> al[::—1]

[3, 5, 2, 4, 1, 3]

| IStS

List Comprehension

Quick way of making lists by applying expressions to

elements in another sequence

[<map exp> for <name> 1in <iter> 1f <filter>]

>>>
L0,
>>>
2y

[X

-7
[X

0]

for x i1n range (4)]
2, 3]
* 2 for x 1n range (4)

1f x

©)

<

O

2

]

lrees

Storing things in order like a list is boring...

In real life, you see trees everywhere!

 [akingnotes

Installation

lllllllllllll ~//
» Directory structure on your computer ~/ \ /&

* Nature and stuft, | guess G G

lrees

A Nodes
Root value =3)
A AN .+ Values
Branch —p , 1) ,
‘o) (1)1
e L 0 1
Recursive description (wooden trees): Relative description (family trees):
A tree has a root value and a list of branches Each location in a tree 1is called a node
Each branch is a tree Each node has a value
A tree with zero branches is called a leaf One node can be the parent/child of another

People often refer to values by their locations: "each parent is the sum of its children"

lrees

Constructor:

tree (label, branches=][])

Selectors:

root (t), branches(t), 1s leaf(t)

Why do these matter?

These sequences are important!

Data structures | use:* gEeBIyidoIg something wrong

Dictionaries
20%

*Numbers totally made up (kinda)

