
Discussion 02:
More Environments and

Recursion

TA: Jerry Chen
Email: jerry.c@berkeley.edu

TA Website: jerryjrchen.com/cs61a

mailto:jerry.c@berkeley.edu?subject=
http://jerryjrchen.com/cs61a

Agenda
1. Attendance

2. Feedback!

3. Announcements

4. Check Your Understanding

5. Lambdas (skip, view slides later)

6. (Quick) Higher order functions, again

7. More environment diagrams

8. Recursion

Thanks for your feedback! Some common trends:

Too much talking, not enough "doing"

• I will blab a bit less

Pace is too fast/too slow

• Might have to compromise a bit here

Hungry

• For knowledge!

• (and food, probably)

• Me too

Attendance
Sign in at bit.do/jerrydisc

OR

Please put your name, SID, and
email on the sign-in sheet.

http://bit.do/jerrydisc

Announcements
Hog due Thursday (Today!)

Homework 3 due Tuesday

Midterm 1 Thursday, 9/15, look for a Piazza post

• Alternate exam requests close on Sunday

• Discussion next week?

Guerrilla Section this Saturday

Sign ups for CSM sections are open! Sections start the week
after the midterm

Check Your Understanding
I made a mistake last week with explaining boolean
order:

>>> True and 1 or not 1/0 and False

Check Your Understanding
square = lambda x: x * x

def test(f, x):
 if f(x) % 2 == 0:
 return lambda g, x: g(square, x)
 else:
 return f(x)

print(test(lambda s: s // 2, 20)(test, 7))

Environment Diagrams
New: Values can also be bound to functions!

Some rules:

• Function call: create and number new frame (f1, f2, etc.)
— always start in global frame

• Assignment: write variable name and expression value

• Def statements: record function name and bind function
object. Remember parent frame!

• Frames return values upon completion (Global is special)

Environment Diagrams
From Kevin Chen's Fall 2015 Review (https://goo.gl/Z6GNwi)

x = 2
def dread(pirate):
 x = 30
 def roberts(westley):
 x = 400
 return westley + pirate(x)

 return roberts(x)

dread(lambda spot: x + spot)

https://goo.gl/Z6GNwi

A Lambda Detour

A Lambda Detour

(lambda x, y: x + y * y)(4, 5)

Lambda definition Lambda call

Result (after currying):
(lambda x = 4, y = 5: x + y * y)

Recursion

Drawing Hands by M. C. Escher

Recursion
Components of a recursive function

• Base case, a simple stopping condition

• Recursive calls on smaller problem

• Putting it together: solve our prob using recursive
result

Leap of faith: assume our recursive function solves
any simpler version of the problem

Recursion
Factorial example
def factorial(n):
 if n == 0:
 return 1
 return n * factorial(n - 1)

Recursion
Fast Exponentiation
def exp(b, n):
 if n == 0:
 return 1
 if n % 2 == 0:
 return exp(b ** 2, n / 2)
 else:
 return b * exp(b, n - 1)

Recursion
What's Wrong?
def hailstone(n):
 print(n)
 if n == 1:
 return
 elif n % 2 == 0:
 n = n // 2
 hailstone(n - 1)
 else:
 n = 3 * n + 1
 hailstone(n - 1)

Tree Recursion
Recursive functions can sometimes require more than
one call!

Fib(n) = Fib(n - 1) + Fib(n - 2)

Very powerful, but also potentially very slow (why?)

Useful when you want to represent choices (e.g.
taking one stair or two stairs)

